
Bootes: Boosting the Efficiency of Sparse Accelerators Using
Spectral Clustering

Sanjali Yadav

University of Maryland

College Park, USA

sanjali7@umd.edu

Bahar Asgari

University of Maryland

College Park, USA

bahar@umd.edu

Abstract
Sparse matrix-matrix multiplication (SpGEMM) is crucial in many

applications, with numerous recent efforts focused on optimizing

it. The row-wise product has emerged as a favorable SpGEMM

dataflow due to its balanced performance, but it alone is insufficient

to minimize data movement and off-chip traffic—key factors for

efficient accelerator deployment. Previous studies face three key

challenges: (1) reordering is often suboptimal, failing to maximize

memory traffic reduction; (2) preprocessing steps are typically slow

and inefficient, making the overhead hard to justify; and (3) cer-

tain sparsity patterns do not benefit from reordering, potentially

increasing traffic, yet existing methods lack a mechanism to detect

such cases. To address these challenges, we propose Bootes, a novel

approach that leverages spectral clustering to optimally reorder

the rows of matrix A, aligning data access patterns with matrix

B to maximize reuse and reduce off-chip memory traffic during

row-wise matrix multiplication. Our key insight lies in using a

similarity matrix that captures the structural properties of matrix

A to guide clustering, along with an optimized implementation of

the spectral clustering algorithm to reduce preprocessing overhead.

Additionally, Bootes incorporates a decision tree model trained

on real-world matrices to predict when reordering is beneficial,

enabling a cost-aware preprocessing strategy. Bootes achieves a

geometric mean speedup of 11.61× in preprocessing time compared

to existing row reordering techniques while maintaining scalability.

It is deployed on state-of-the-art accelerators—Flexagon, GAMMA,

and Trapezoid—where it reduces off-chip traffic by 2.31×, 1.67×,
and 1.38×, respectively, thereby boosting their efficiency.

Keywords
Sparse Matrix-Matrix Multiplication, Matrix Reordering, Sparse

Accelerators

ACM Reference Format:
Sanjali Yadav and Bahar Asgari. 2025. Bootes: Boosting the Efficiency

of Sparse Accelerators Using Spectral Clustering. In 58th IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO ’25), October 18–22,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3725843.3756125

This work is licensed under a Creative Commons Attribution 4.0 International License.

MICRO ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1573-0/25/10

https://doi.org/10.1145/3725843.3756125

1 Introduction
Sparse General Matrix-Matrix Multiplication (SpGEMM) is a funda-

mental kernel across domains such as scientific computing, graph

analytics, and deep learning, where sparsity is prevalent. Since

sparsity causes performance degradation when running on tra-

ditional general-purpose computing systems that are often opti-

mized for dense data, numerous studies have been exploring various

techniques to enhance the efficiency of sparse computations [8–

10, 12, 13, 16, 18, 25, 35–40, 42, 43, 46, 47, 52, 58–60, 65, 67, 68, 72, 74].

Sparse accelerators have explored a range of techniques such as

re-purposing traditional architectures to handle sparsity [19, 20, 45,

63], using hardware/software co-designs with a focus on compres-

sion formats [10, 29, 41, 58, 59, 62, 78], or proposing techniques to

target a certain category of applications such as sparsity in deep

learning applications [8, 18, 25, 31, 35, 36, 40, 42, 67, 74].

More specifically, prior SpGEMM [50, 61, 77] accelerators em-

ployed different dataflows for kernel implementation. The most

common dataflows are inner product, outer product, and row-wise

product [17], each offering distinct trade-offs. For instance, the

inner product provides good output reuse but poor input reuse

and is inefficient for highly sparse matrices due to the overhead of

intersecting indices of ineffective elements. In contrast, the outer

product enables efficient input reuse but results in high memory

traffic from large partial output matrices. The row-wise product

strikes a balance between these approaches, offering reduced mem-

ory traffic with smaller partial products and eliminating the need

for index matching. This makes the row-wise product particularly

effective for highly sparse inputs, and it has emerged as the pre-

ferred dataflow in many state-of-the-art accelerators [32, 61, 77] as

a result of its favorable trade-offs.

While the row-wise product minimizes memory traffic by balanc-

ing the extremes of inner and outer products, it still incurs signifi-

cant data movement and memory traffic due to irregular memory

access patterns, impacting the energy efficiency of novel acceler-

ators. To address this, prior studies [4, 27, 77] have introduced a

preprocessing step for row-wise product that reorders the rows of

one input matrix to enhance data reuse and reduce memory traffic

of the other input matrix. However, row reordering presents chal-

lenges. Although optimal reordering can drastically reduce memory

traffic, it introduces substantial overhead in terms of preprocessing

time and memory requirements on the host. Furthermore, existing

approaches face three key limitations: (1) the reordering is often

suboptimal, failing to maximize the potential reduction in memory

traffic, (2) the preprocessing steps are typically slow and inefficient,

making the cost of reordering unjustifiable, even when performed

as a one-time operation, and (3) certain sparsity patterns do not

benefit from reordering or may even experience increased memory

1

https://orcid.org/0009-0000-5611-5892
https://orcid.org/0000-0003-2305-9892
https://doi.org/10.1145/3725843.3756125
https://doi.org/10.1145/3725843.3756125
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756125

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Sanjali Yadav and Bahar Asgari

traffic when reordered. Existing studies lack a mechanism to iden-

tify such scenarios, where the optimal strategy would be to avoid

reordering altogether.

To address these challenges, we propose boosting the efficiency

of sparse accelerators, through Bootes
1
, which reduces the off-chip

traffic in Flexagon [46], GAMMA [77], and Trapezoid [73] by a

geomean factor of 2.31×, 1.67×, 1.38×, respectively while accelerat-

ing the preprocessing method by a geomean factor of 11.61×. Our
key insight lies in leveraging spectral clustering with a similarity

matrix that encodes the structural properties of the input matrix A.

This enables optimal row reordering of matrix A, aligning access

patterns to matrix B to maximize data reuse and minimize memory

traffic. We optimize the implementation of the spectral clustering

algorithm to reduce the overhead of row reordering, making it

more efficient than existing solutions. Bootes also incorporates a

decision tree model that evaluates the sparsity pattern of the input

matrix before reordering to predict whether the preprocessing is

worthwhile.

To showcase how Bootes enhances the efficiency of state-of-the-

art sparse accelerators, we integrate it with Flexagon, GAMMA,

and Trapezoid [73], all of which utilize the row-wise product for

their SpGEMM implementations. We evaluate performance across a

diverse set of matrices to demonstrate Bootes’ impact. Additionally,

our scalability studies show that Bootes maintains robust efficiency

in both preprocessing time and memory footprint, outperforming

prior approaches as the matrix size and density vary.

In summary, we make the following contributions:

• We analyze the row-wise product, which is recognized for

generating the least memory traffic among common dataflows,

and identify further opportunities for memory traffic reduction.

We demonstrate that row reordering is an effective strategy for

minimizing memory traffic, and conduct an in-depth analysis to

show why existing row reordering techniques fail to fully capitalize

on this potential.

• We introduce Bootes, a novel row reordering technique that

leverages spectral clustering to minimize memory traffic and im-

prove data locality. Moreover, Bootes optimizes preprocessing time

and memory footprint, offering significant improvements over ex-

isting methods.

• We construct a dataset derived from a wide range of real-world

matrices, capturing key features that characterize their sparsity pat-

terns. Using this dataset, we train a decision tree model to conduct a

cost-benefit analysis, predicting whether row reordering will yield

sufficient performance gains to justify the associated overheads.

• We integrate Bootes with state-of-the-art accelerators to em-

pirically demonstrate its efficacy in reducing memory traffic and

data movement. We also evaluate Bootes across a broad spectrum of

matrices with diverse sparsity patterns, showcasing its performance

improvement over existing techniques, both in terms of memory

traffic reduction and preprocessing efficiency.

2 Background and Challenges
This section first reviews dataflows for SpGEMM, focusing on the

advantages of row-wise product. It then discusses the limitations of

1Bootes is a constellation in the northern sky.

prior solutions for improving row-wise-product-based accelerators,

highlighting gaps that Bootes addresses with further optimizations.

2.1 Dataflows and the Favorable One Used in
Recent Sparse Accelerators: Row-wise
Product

Three common dataflows exist for sparse matrix-matrix multipli-

cation: inner product, outer product, and row-wise product, as

summarized in Table 1. To compute 𝐴𝑀×𝐾 × 𝐵𝐾×𝑁 = 𝐶𝑀×𝑁 , all
approaches use a triply-nested loop over dimensions𝑀 , 𝑁 , and 𝐾 .

Their key difference lies in the placement of the 𝐾-loop: innermost

in inner product, outermost in outer product, and middle in row-

wise product. Inner product multiplies a row of A with a column

of B, leading to efficient reuse of C but high over-fetching from B

due to repeated accesses. Outer product pairs columns of A with

rows of B, optimizing input reuse but often requiring large partial

sums to be offloaded to off-chip memory, increasing data movement.

Row-wise product multiplies the nonzero elements of a row in A

with the corresponding elements in B, balancing the challenges of

IP and OP. It avoids index matching, generates fewer unnecessary

outputs, and efficiently reuses C. However, irregular access patterns

to B caused by the distribution of nonzero elements in A limit its

efficiency. As a result of these favorable trade-offs, the row-wise

product is used in many state-of-the-art accelerator designs.

2.2 Drawbacks of Row-wise Product and Prior
Solutions: Tiling and Row Reordering

While among the dataflows, the row-wise product offers the most

favorable trade-offs, its primary drawback lies in poor input reuse

for matrix B. Specifically, effective reuse of matrix B’s rows occurs

whenmultiple nonzero elements in matrix A share the same column

coordinates and are located in adjacent rows. Unfortunately, this

scenario is uncommon for two main reasons: (1) High row density:
If a single row in matrix A contains many nonzeros, it will require

accessing multiple rows of B. This leads to frequent cache thrashing

and increased data movement; (2) Lack of structure in sparse
matrices: Adjacent rows in matrix A often contain largely disjoint

column coordinates, minimizing opportunities for reusing the same

rows of B.

Previous work has addressed the challenge of high row den-

sity by proposing tiling strategies for the input matrix. ASpT [22]

introduced an adaptive-tiling technique to improve data locality

by dividing the sparse matrix into row panels. Within each panel,

columns are reordered to separate densely populated columns from

sparse ones. For densely populated columns, traditional tiling is

Table 1: Summary of how the dataflow selection impact var-
ious design aspects.“✗" indicates a potential challenge and
“✓" indicates no issue.

Aspect ↓ \ Dataflow→ Inner Outer Row-wise

Psum Granularity ✓ ✗ ✓

Input Format ✗ ✗ ✓

Index Intersection ✗ ✓ ✓

Input Reuse (B) ✗ ✓ ✗

Output Reuse (C) ✓ ✗ ✓

2

Bootes: Boosting the Efficiency of Sparse Accelerators Using Spectral Clustering MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

applied: dividing rows with many nonzeros into smaller sub-rows

by tiling them along the column dimension. Instead of process-

ing a dense row all at once, it now interleaves with other rows in

the panel, encouraging shared access to matrix B and minimizing

unnecessary cache reloads. Similarly, TileSpGEMM [48] employs

a tiling approach to enhance data locality. However, its method

differs by dividing the input matrix into fixed 16×16 sub-blocks,

followed by block matrix multiplication. With a consistent tile size

of 16×16, each block contains only a small number of zeros. This

prevents a single row from becoming excessively long, helping to

avoid cache thrashing and ensuring more efficient data reuse.

The second challenge – dealing with the lack of structure in

sparse matrices – is more complex, as real-world sparse matrices

often exhibit little to no structure. Previous work has attempted to

address this through row reordering, which brings rows with simi-

lar column coordinates closer together [4, 27, 77]. They have shown

that when the sparsity pattern allows for effective reordering, sig-

nificant gains can be achieved by reducing memory traffic and

data movement—making the preprocessing overhead worthwhile.

Figure 1 depicts the sparsity pattern of the 𝑖𝑛𝑣𝑒𝑥𝑡𝑟1_𝑛𝑒𝑤 matrix

from the SuiteSparse collection [7], revealing a notable pattern. We

marked repeated column coordinate patterns across distant rows.

Such repetitions indicate that these rows access the same rows of

matrix B. Despite the visual proximity in the figure, the matrix’s ac-

tual size of 30k by 30k means these rows are significantly separated.

Therefore, by the time similar column coordinate patterns recur,

the corresponding rows of B may no longer reside in the cache,

necessitating a read from off-chip memory. This issue becomes

more pronounced in larger matrices with higher density.

Consequently, reordering these rows to align their column co-

ordinate patterns has emerged as a popular solution. However, re-

ordering these rows requires analyzing the entire matrix to identify

inter-row patterns, a process that is both computationally demand-

ing and memory-intensive. The matrix A must be read into memory

on the host, reordered, and then written back, adding significant

preprocessing overhead. Given these resource demands, the bene-

fits of reordering must justify the cost to ensure it is a worthwhile

optimization. Prior studies [4, 27, 77] incorporate various optimiza-

tions to minimize preprocessing time and memory usage, ensuring

that reordering remains a practical and efficient solution. However,

after analyzing their methods in the following sub-sections, we

show that there is still room for significant improvement. Moti-

vated by these studies, Bootes leverages reordering and introduces

an efficient implementation that offers a practical and effective

solution to this challenge (more details in Section 3).

2.2.1 GammaRowReordering. Algorithm 1 outlines GAMMA’s [77]

row reordering algorithm, which improves matrix operations by

enhancing cache efficiency. This greedy algorithm uses a priority

queue 𝑄 to reorder rows based on similarity. All input matrix rows

are initially added to the queue with zero priority. The algorithm

starts by selecting a random row, adding it to 𝑃 , the array of the

final row permutation. At each step, it inspects the latest row in 𝑃

and identifies columns with nonzero values. For each such column,

it increases the priority of other rows not yet in 𝑃 that also have

nonzero values in that column. This favors rows with similar access

patterns to matrix B, grouping them closer together. As detailed

Figure 1: Opportunity for Reordering – The annotations in-
dicate opportunities to reorder the rows of matrix A (nonze-
roes illustrated by blue dots) to increase the similarity among
their column coordinates, ensuring that rows with similar
patterns are positioned closely together to optimize memory
access for matrix B.

Algorithm 1 Gamma [77]

1: Input: Rows of matrix A,𝑀 number of rows

2: Output: Permutation 𝑃 of row indices

3: for 𝑟 ∈ rows do
4: 𝑄.insert(𝑟, 0)
5: end for
6: Select some row 𝑟 to start, 𝑃 [0] ← 𝑟 , 𝑄.remove(𝑟)
7: for 𝑖 ∈ [1, 𝑀] do
8: for 𝑢 ∈ column coords of row 𝑃 [𝑖 − 1] do
9: for 𝑟 ∈ row coords of column 𝑢 do
10: if 𝑟 ∈ 𝑄 then 𝑄.incKey(𝑟)
11: end for
12: end for
13: if 𝑖 >𝑊 then
14: for 𝑢 ∈ column coords of row 𝑃 [𝑖 −𝑊 − 1] do
15: for 𝑟 ∈ row coords of column 𝑢 do
16: if 𝑟 ∈ 𝑄 then 𝑄.decKey(𝑟)
17: end for
18: end for
19: end if
20: 𝑃 [𝑖] ← 𝑄.pop()
21: end for

in Table 2, the algorithm’s complexity is dominated by 𝑄2
, as each

of the 𝑁 rows may update priorities for up to 𝑄 entries, with each

priority queue operation taking 𝑂 (𝑙𝑜𝑔𝑁). Performance degrades

with matrix density due to increased priority updates.

A key feature is the window size𝑊 , defining how many rows fit

in cache. As the algorithm progresses to a new window, it decreases

the priority of rows similar to those from earlier windows, specifi-

cally those 𝑖-𝑊 -1 strides back, assuming their associated data has

been evicted from cache. This biases the algorithm toward rows

with patterns resembling those at the end of the previous window,

under the assumption that their data is still cache-resident. This

design aligns reordering with cache reuse, aiming to reduce cache

misses and off-chip memory traffic.

A primary limitation is GAMMA’s greedy nature. Starting from a

random row can lead to suboptimal results, as early choices heavily

3

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Sanjali Yadav and Bahar Asgari

(b) Gamma (c) Graph (d) Hier (e) Boötes k=2 (f) Boötes k=4 (g) Boötes k=8 (h) Boötes k=16 (i) Boötes k=32(a) Original

Figure 2: Visualized row reordering – Figures (b-d) display the results of applying Gamma, Graph, and Hier row reordering to
Figure (a). Figures (e-i) illustrate the results of applying Bootes reordering to the matrix in Figure (a) for different k-values.

influence subsequent ones. While the window size𝑊 aims to bal-

ance local and global reordering, it imposes structural constraints.

Within each window, the algorithm groups rows with similar col-

umn patterns to enhance local reuse and attempts to extend recent

patterns for continuity. However, real-world matrices often have

irregular sparsity, making pattern continuity across windows dif-

ficult. When new window patterns diverge from previous ones,

the algorithm fails to align rows effectively, reducing reordering

benefits. This limitation is visualized in Figure 2b, which shows

GAMMA’s result applied to figure 2a. In contrast, the ideal out-

come in figure 2e would show vertically aligned columns, reflecting

optimized access to matrix B.

Algorithm 2 Graph [4]

1: Input:Matrix A,𝑀 number of rows

2: Output: Permutations 𝑃 of row indices

3: initialize 𝐺 (𝑉 , 𝐸) with 𝑟 vertices and no edges

4: initialize hash table visited[][] for 𝑟 vertices

5: for 𝑢 ∈ [1, 𝑀] do
6: for 𝑐 ∈ column coords of row 𝑢 do
7: for 𝑣 ∈ row coords of column 𝑐 and 𝑢 ≠ 𝑣 do
8: if (𝑢, 𝑣) ∉ 𝐸 then
9: 𝐸 ← 𝐸 ∪ (𝑢, 𝑣)
10: 𝑤 (𝑢, 𝑣) ← 0

11: end if
12: 𝑤 (𝑢, 𝑣) ← 𝑤 (𝑢, 𝑣) + 1
13: end for
14: end for
15: end for
16: 𝑟𝑜𝑤_𝑖𝑑𝑥 ← index of a random row in A

17: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑟𝑜𝑤_𝑖𝑑𝑥] ← 1

18: 𝑃 [0] ← 𝑟𝑜𝑤_𝑖𝑑𝑥

19: for 𝑖 ← 1 to 𝑟 − 1 do
20: 𝑟𝑜𝑤_𝑖𝑑𝑥 ← maxPath(𝑃 [𝑖 − 1], 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
21: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑟𝑜𝑤_𝑖𝑑𝑥] ← 1

22: 𝑃 [𝑖] ← 𝑟𝑜𝑤_𝑖𝑑𝑥

23: end for

2.2.2 Graph Row Reordering. Algorithm 2 describes the graph-

based row reordering algorithm proposed in prior work for an

FPGA-based SpGEMM accelerator [4]. This method uses a graph-

based approach to capture the similarity between matrix rows by

constructing a weighted graph 𝐺 (𝑉 , 𝐸), where each vertex corre-

sponds to a row, and edge weights represent the number of shared

column coordinates between two rows.

Graph construction closely mirrors GAMMA’s reordering logic.

For each row in matrix A, the algorithm iterates over its column co-

ordinates. For every coordinate, it identifies other rows containing

that same value and creates edges (𝑢, 𝑣) between the correspond-

ing vertices. The weight 𝑤 (𝑢, 𝑣) is incremented for each shared

coordinate. As the sparsity of the matrix A increases, the result-

ing graph becomes proportionally sparser, which improves both

storage efficiency and traversal speed. As shown in Table 2, the

time complexity is dominated by the 𝑞2 term. For each of the 𝑟 non-

empty rows, up to 𝑞 nonzero elements may lead to connections

with up to 𝑞 other rows, resulting in 𝑞2 edge operations per row.

The graph construction phase dominates the complexity, as each

nonzero element can potentially connect to 𝑞 other elements in the

same column. The 𝑟 term reflects the reduced problem size, as the

algorithm only processes non-empty rows.

Once the graph is constructed, the algorithm traverses it to

determine the row permutation. A visited table tracks which rows

have already been added to the permutation list. The process starts

by randomly selecting a row from A, then repeatedly selects the

next unvisited row that shares the highest weighted edge with the

most recently added row. This is done using the following function:

maxPath(𝑢, visited) = argmax

𝑣∈𝑉
𝑤 (𝑢, 𝑣)

s.t. (𝑢, 𝑣) ∈ 𝐸 and visited[𝑣] ≠ 1. (1)

This greedy strategy prioritizes local similarity by choosing the

most similar unvisited neighbor at each step. Unlike GAMMA,

which attempts to preserve global structure throughwindowing, the

graph-based method emphasizes strong local connections. While

this can be advantageous for certain sparsity patterns, it may still

yield suboptimal reordering for more irregular matrices. This trade-

off is evident in Figure 2c, showing improved vertical alignment and

reduced fragmentation compared to GAMMA, but still retains some

of the original disjoint patterns, indicating incomplete optimization.

2.2.3 Hierarchical Cluster Row Reordering. Algorithm 3 summa-

rizes the hierarchical clustering-based row reordering algorithm

in recent work [27]. It uses locality-sensitive hashing (LSH) [34] to

group rows into buckets, ensuring that rows in the same bucket

share similar column coordinates, while rows in different buckets

are less likely to be similar. LSH serves as an efficient approximation

to a full similarity matrix, avoiding exhaustive pairwise compar-

isons. It uses fixed parameters, siglen and bsize, which remain

constant across all matrices. The algorithm calculates similarity

using the Jaccard score, defined as the ratio of shared column co-

ordinates to the total number of unique coordinates between two

rows.

As shown in Table 2, the algorithm’s time complexity consists

of three terms. The (𝑁 + 𝐸)𝑙𝑜𝑔𝐸 term arises from priority queue

4

Bootes: Boosting the Efficiency of Sparse Accelerators Using Spectral Clustering MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 2: Time Complexity Analysis of Row Reordering Algorithms

Term Definitions Algorithm Time Complexity Dominant Factor Scalability
𝑁 – number of rows

𝑄 – avg nonzeros per row

𝑟 – nonempty rows

𝑞 – avg nonzeros per row/col

𝐸 – candidate pairs from LSH

𝑘 – clusters & eigenvectors

𝑑 𝑗 – nnz in column 𝑗 of 𝐴

𝑔 – 𝑛𝑛𝑧 (𝑆)/𝑁 , 𝑆 = 𝐴𝐴𝑇

𝑡 – Krylov iterations

Gamma [77] 𝑂 (𝑁 log𝑁 ·𝑄2) 𝑄2
density squared Poor with density

Graph [4] 𝑂 (𝑟 × 𝑞2) 𝑞2 density squared

Good (only nonempty

rows)

Hier [27] 𝑂 (𝐸 log𝑁 + (𝑁 + 𝐸) log𝐸 + 𝑁) 𝐸𝑙𝑜𝑔𝐸 candidate pairs Moderate

Bootes 𝑂

(∑︁
𝑗

𝑑2𝑗︸︷︷︸
𝐴𝐴𝑇

+ 𝑁𝑔︸︷︷︸
Laplacian

+ 𝑁𝑔𝑘𝑡︸︷︷︸
Eigensolve

+ 𝑁𝑘2︸︷︷︸
Kmeans

)
𝑁𝑘2 or 𝑁𝑔𝑘𝑡 linear in

matrix size

Excellent

Algorithm 3 Hierarchical Cluster (Hier) [27]

1: Input:Matrix 𝐴, 𝑏𝑠𝑖𝑧𝑒 , 𝑠𝑖𝑔𝑙𝑒𝑛, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒

2: Output: Permutations 𝑃 of row indices

3: Initialize 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑝𝑎𝑖𝑟𝑠 using LSH(𝑆 , 𝑠𝑖𝑔𝑙𝑒𝑛, 𝑏𝑠𝑖𝑧𝑒)

4: Use a max-heap 𝑠𝑖𝑚_𝑞𝑢𝑒𝑢𝑒 for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑝𝑎𝑖𝑟𝑠

5: Define arrays: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑 (track root node), 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑧 (size of

each cluster, init 1s), 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 (track deleted nodes, init false)

6: procedure root(𝑖) ⊲ Find representative row in cluster

7: while 𝑖 ≠ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑 [𝑖] do
8: 𝑖 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑 [𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑 [𝑖]]
9: end while
10: return 𝑖
11: end procedure
12: while not 𝑠𝑖𝑚_𝑞𝑢𝑒𝑢𝑒 .empty() and 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 > 0 do
13: (𝑖, 𝑗) ← 𝑠𝑖𝑚_𝑞𝑢𝑒𝑢𝑒 .pop() ⊲ Pair with high similarity

14: if 𝑖 and 𝑗 are the representing rows then
15: merge smaller cluster into larger one

16: if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑧 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒 then
17: delete the cluster and nclusters -= 1

18: end if
19: else
20: i=root(i); j=root(j);

21: if 𝑖 , 𝑗 are not in the same cluster then
22: compute (𝑖 , 𝑗) jaccard similarity

23: add similarity to the queue

24: end if
25: end if
26: end while
27: Group rows into clusters, update 𝑃 with cluster values

operations, where 𝑁 initial rows and 𝐸 candidate pairs are managed

in a max-heap, with each insertion or extraction taking 𝑂 (𝑙𝑜𝑔𝐸)
time. The 𝐸𝑙𝑜𝑔𝑁 term accounts for the LSH phase, where 𝐸 can-

didate pairs are generated, and each hashing operation requires

𝑂 (𝑙𝑜𝑔𝑁) time. The final 𝑂 (𝑁) term corresponds to the linear-time

processing required to organize and output the final clusters.

The algorithm proceeds by generating a list of highly similar

candidate row pairs using LSH and inserting them into a priority

queue. Initially, each row gets treated as its own cluster. Iteratively,

the algorithm extracts the most similar row pair (𝑖, 𝑗) and merges

their respective clusters. Each cluster is implemented as a tree,

allowing efficient merging by appending one tree as a child of

another. A representative row is chosen for each cluster to guide

future merges. If a cluster contains only one row, that row serves

as the representative. When two clusters merge, the representative

of the larger cluster is used; if both are equal in size, the row with

the smaller index is selected.

While implementation details are available in the original paper[27],

the core idea approximates a similarity matrix using LSH and it-

eratively merges clusters based on similarity until a predefined

size limit is reached. However, the use of a fixed 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑖𝑧𝑒 to

constrain cluster size introduces a limitation. It does not adapt to

varying sparsity patterns because highly similar rows may be split

across different clusters, reducing the effectiveness of row grouping.

Moreover, the method does not address global alignment across

clusters—once clusters are formed, there is no reordering step to

ensure structural coherence between them.

Another challenge is the strategy for choosing the representative

row. Using the rowwith the smallest index can introduce bias. If that

row is dense, it may align with many others, leading to oversized

clusters. If it is sparse, it may result in underdeveloped clusters,

reducing the quality of reordering. Figure 2d highlights many of

the original patterns are still visible after applying this technique,

indicating lack of optimal row merging and presence of disjoint

groupings.

2.3 Summary of Our Targeted Challenges
The three algorithms discussed in Section 2 address the challenge of

reordering the rows of a sparse input matrix A to mitigate the lack

of structure inherent in sparse matrices. This structural deficiency

causes adjacent rows in matrix A to have largely disjoint column

coordinates, reducing the potential to reuse the same rows of matrix

B during computations. While each algorithm takes a different

approach, they all leverage the matrix sparsity pattern to reorder

rows such that adjacent rows exhibit similar column coordinates.

Although these row reordering techniques improve the efficiency

of the target accelerators, they introduce significant overheads in

terms of preprocessing time (i.e., time complexity) and memory

usage (i.e., storage complexity), particularly when transitioning

from highly to moderately sparse inputs. Another issue, overlooked

by most of the papers except [27], is that reordering can sometimes

result in performance degradation. In certain scenarios, greedy

heuristics may yield suboptimal configurations, and in other cases,

the sparsity patternmay not allow any reordering to outperform the

original row order. Therefore, it is essential to develop a mechanism

for identifying such cases. This would ensure that resources are

not wasted on reordering matrices where it offers no performance

5

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Sanjali Yadav and Bahar Asgari

benefit and that the reordering process itself is not implemented

sub-optimally, thereby preserving computational efficiency.

3 Bootes
Bootes introduces a novel approach to row reordering for matrices

with highly diverse sparsity patterns. First, as Section 3.1.1 explains,

Bootes showcases that with strategic optimizations, spectral cluster-

ing can be effectively applied to this domain, significantly reducing

memory traffic, preprocessing time, and overall memory footprint

compared to existing algorithms. A unique feature of Bootes is its

integration of a decision tree model that performs a cost-benefit

analysis to assess whether reordering will yield performance gains

(detail in Section 3.2). If beneficial, the model dynamically selects

optimal parameters tailored to the matrix-specific sparsity pattern

to maximize memory efficiency. Our rationale for choosing decision

trees is based on a balance between accuracy and storage efficiency.

Although we experimented with random forests, XGBoost, and

SVMs – with XGBoost achieving the highest accuracy – it required

considerably more storage. Decision trees, while offering similar

levels of accuracy, present a lightweight solution that better meets

our objective for efficient storage in potential online deployments.

Designed to enhance, not replace, existing hardware, Bootes oper-

ates atop state-of-the-art accelerators, boosting their performance

without the need for specialized hardware.

3.1 Spectral Clustering
Spectral clustering is a machine learning technique that identifies

clusters by analyzing the eigenvalues and eigenvectors of a simi-

larity matrix. It is particularly effective for non-linearly separable

or irregularly shaped data, with applications in image segmenta-

tion, gene clustering, and document organization. Unlike K-means,

which relies on linear boundaries, spectral clustering captures com-

plex patterns by embedding data into a new space via eigenvector

decomposition. Compared to hierarchical clustering, which builds

nested clusters through iterative merging, spectral clustering is

more flexible. While hierarchical methods perform well on com-

pact, evenly shaped clusters, they struggle with irregular structures,

often found in sparse matrices. Spectral clustering, by contrast,

captures global data structure, accommodating non-linear patterns

and varying cluster sizes. In matrix reordering, spectral clustering

offers a key advantage by leveraging global patterns rather than

local similarities, making it especially effective for matrices with

diverse or long-range dependencies where traditional methods may

fall short.

3.1.1 Using Spectral Clustering for Row Reordering. Algorithm 4

outlines the spectral clustering algorithm, including four key steps

to compute clusters of matrix rows:

Construct Similarity Matrix (line 12): Given a matrix A in

Compressed Sparse Row (CSR) format, we calculate the similarity

matrix by computing the dot product of the matrix with its trans-

pose. Since the matrix is in binary format (with nonzeros replaced

by 1s), the similarity matrix effectively captures the number of

shared column coordinates between two rows. Each entry in the

similarity matrix measures how many nonzero elements (columns)

two rows have in common, which serves as a measure of row-wise

similarity.

Algorithm 4 Spectral Clustering Algorithm in Bootes

1: Input:Matrix 𝐴, 𝑘

2: Output: Permutations 𝑃 of row indices

3: procedure ComputeLaplacian(similarity_matrix)

4: 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ← Array(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 .𝑠𝑢𝑚).𝑓 𝑙𝑎𝑡𝑡𝑒𝑛()
5: 𝑖𝑛𝑣_𝑠𝑞𝑟𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 ← 1.0/

√︁
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

6: 𝐷_𝑖𝑛𝑣_𝑠𝑞𝑟𝑡 ← csr_matrix(𝑖𝑛𝑣_𝑠𝑞𝑟𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠)
7: 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 ← I(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 .𝑛𝑟𝑜𝑤𝑠)
8: 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 ← 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 − 𝐷_𝑖𝑛𝑣_𝑠𝑞𝑟𝑡

@ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥@𝐷_𝑖𝑛𝑣_𝑠𝑞𝑟𝑡

9: end procedure
10: return 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛
11: 𝐴.𝑑𝑎𝑡𝑎 ← 1

12: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 ← 𝐴 · 𝐴𝑇
13: 𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 ← ComputeLaplacian(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥)
14: 𝑣0← Array(𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛.𝑛𝑟𝑜𝑤𝑠)
15: 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 ← scipy.sparse.linalg.eigsh(𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛, 𝑘, 𝑣0)
16: 𝑘𝑚𝑒𝑎𝑛𝑠 ← sklearn.cluster.KMeans(𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝑘)
17: 𝑃 ← 𝑘𝑚𝑒𝑎𝑛𝑠.𝑓 𝑖𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠)

Compute LaplacianMatrix (line 13): The Laplacian matrix is a

transformation of the similarity matrix that captures both the local

and global structure of the data, making it easier to detect clusters.

The normalized Laplacian matrix is defined as:

𝐿 = 𝐼 − 𝐷−1/2 · 𝐴 · 𝐷−1/2

where I is the identity matrix, A is the similarity matrix, and D is

the degree matrix, where each diagonal entry 𝐷𝑖𝑖 is the sum of the

similarities for row i.

Intuitively, the Laplacian captures how each node differs from its

neighbors by combining information from the similarity and degree

matrices. This makes it well-suited for identifying clusters—groups

of nodes more connected to each other than to the rest of the graph

[66]. Its eigenvectors reveal these groupings, as nodes within a

cluster tend to share similar eigenvector values, reflecting strong

internal similarity and weak external links. Effectively, the Lapla-

cian acts like a discrete second derivative, highlighting deviations

from local averages and exposing the graph’s underlying cluster

structure [44].

Compared to simpler similarity metrics like Jaccard or commute

time, Laplacian-based methods are more expressive, capturing both

local affinities and global connectivity. They adapt naturally to

variations in graph density and support multi-scale, hierarchical

clustering by tuning spectral components, making them particularly

robust for detecting complex or irregularly shaped clusters.

Calculate Eigenvectors of the Laplacian Matrix (line 15):

This step involves extracting the top-k eigenvectors of the Laplacian

matrix, corresponding to the smallest nonzero eigenvalues. These

eigenvectors form the spectral embedding of the data, representing

each row in a lower-dimensional space where clustering becomes

easier. The top-k eigenvectors capture the most meaningful cluster

structure by minimizing noise and focusing on stable relationships

across rows. In this spectral space, the rows of the original matrix

are better separated, even if they were non-linearly separable in

the original space. This step helps prevent the clustering algorithm

6

Bootes: Boosting the Efficiency of Sparse Accelerators Using Spectral Clustering MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

from being trapped in local minima, which is a common issue in

traditional algorithms like K-means.

Figure 2(d-h) illustrates how the selection of k values affects the

spectral clustering reordering algorithm. In this example, k = 2 is

the optimal configuration, as it successfully reorders the rows to

align their column coordinate patterns. The top 2 eigenvectors were

sufficient to capture the structure of the input matrix. The pattern

and size of the input matrix influence the optimal k value, and we

will discuss how to select the value in section 3.2.

PerformK-meansClustering onEigenvectors (line 16): Once
the rows are transformed into the spectral embedding space, we

apply K-means clustering to group similar rows based on their new

coordinates. In this transformed space, each row corresponds to a

data point, and each column of the eigenvector matrix represents

an eigenvector that captures key structural relationships within the

original data. These eigenvectors act as new features, with the top

k eigenvectors providing a low-dimensional space where clusters

are more separable. If two rows have very similar values across

all eigenvectors, they are likely close in the original data and may

belong to the same cluster. K-means leverages these coordinates

to partition the data, ensuring that even rows with complex, non-

linear patterns in the original space are grouped into coherent

clusters in the spectral space.

The time complexity of Bootes, detailed in Table 2, consists

of four primary stages: similarity matrix construction (O(

∑
𝑗 𝑑

2

𝑗
)),

Laplacian generation (O(𝑁𝑔)), iterative eigen solver (O(𝑁𝑔𝑘𝑡)), and

k-means clustering (O(𝑁𝑘2)). The runtime is dominated by the

trade-off between the eigensolver and k-means, as the initial matrix

construction is not a bottleneck for our target sparse workloads.

Since the number of clusters k is a small, fixed constant, the O(𝑁𝑘2)

cost of k-means scales linearly with the number of rows N. The

eigensolver’s cost, O(𝑁𝑔𝑘𝑡), also exhibits linear scaling with N

because the average row density of the similarity matrix (𝑔) and the

number of Krylov iterations (𝑡) are typically small and well-behaved

for sparse graphs. The bottleneck shifts from k-means on extremely

sparse graphs to the eigensolver as graph density increases, but

the scalability remains linear in matrix size. We conduct empirical

validation in Section 5.3.

3.1.2 Optimizations. Spectral clustering aligns well with our prob-

lem because of the diverse, sparse patterns inherent in real-world

matrices, which often violate the assumptions of traditional cluster-

ing algorithms—such as linear separability and predefined cluster

shapes. However, spectral clustering introduces additional com-

putational overhead. Recent advancements in the literature offer

optimized algorithms that address these challenges, allowing us to

implement spectral clustering efficiently and at scale. By leveraging

these implementations, we achieved superior preprocessing per-

formance compared to previous approaches, especially as matrix

density and size increase (more in Section 5.3).

Our key optimization stems from the sparsity of matrix A, which

ensures that the associated similarity matrix and Laplacian matrix

also remain sparse. This translates into a reduced memory footprint

since these matrices are maintained in CSR (Compressed Sparse

Row) format throughout the computation. To compute pairwise

similarity, we directly calculate the dot product between binary

matrices in sparse format. Although LSH in hierarchical clustering

reduces computational overhead, it sacrifices accuracy in similar-

ity calculations, which is evident from figure 2c. Increasing LSH

parameters such as siglen and b improves accuracy but introduces

additional computational complexity. In contrast, graph and gamma

reordering algorithms avoid storing the full similarity matrix explic-

itly as an optimization. However, they incur their own overhead by

requiring tracking of row-column relationships, specifically keep-

ing track of which rows share the same column coordinates. We

provide a detailed discussion of these trade-offs in Section 5.4.

After constructing the similarity matrix, we compute the Lapla-

cian matrix – an operation that is computationally intensive but

manageable because of the sparsity maintained throughout. The

degrees of the nodes𝐷 (i.e., rows of matrix A) are stored as an array,

with each element representing the sum of the corresponding row.

Another array, inv_sqrt_degrees, stores the inverse square root of

the degrees. These values are then used to construct a diagonal ma-

trix in CSR format. The identitymatrix 𝐼 is also represented in sparse

format, minimizing memory usage throughout. With these compo-

nents, we compute the Laplacian matrix using sparse arithmetic

operations provided by highly optimized Python libraries. Once the

Laplacian matrix is available, we extract eigenvectors using efficient

sparse matrix eigensolvers. Our key optimization stems from the

constraints on the parameter k, which controls both the number of

eigenvectors to extract and the number of clusters for the k-means

step. Keeping k small helps mitigate computational overhead. We

experimented with various k-values across 500 matrices from the

SuiteSparse [7] and SNAP [33] collections and identified that the

values 2, 4, 8, 16, and 32 offer the most optimal trade-off. These

values effectively limit problem size and computational overhead

while achieving significant performance improvements.

3.2 Decision Tree
A critical component of Bootes is the decision tree model, which

determines bothwhethermatrix reordering should be applied and, if

so, selects the optimal k-value for spectral clustering. Since spectral

clustering is highly sensitive to parameter tuning, particularly to

the choice of k, it is essential to develop a systematic approach to

parameter selection that generalizes across matrix structures.

We began by constructing a decision tree using a broad set of

candidate features derived from sparse matrices. To support this,

we curated a dataset of over 500 matrices from the SuiteSparse and

SNAP collections, with a diverse range of matrix sizes, structures,

and sparsity patterns. After training the initial model, we analyzed

feature importance and pruned the tree to retain only the most

influential features. This process helped identify a compact yet

expressive feature set.

The final model uses the following features: global sparsity (i.e.,

the ratio of nonzero to total elements); the variance of nonzeros per

row and per column, which captures the uniformity or skewness

in the distribution of sparsity; and intersection metrics that reflect

structural overlap. Specifically, the intersection average quantifies

the degree of shared nonzero positions between rows, while the

variation in intersection indicates whether such overlap follows

a consistent pattern or varies widely across the matrix. Together,

these features serve as structural fingerprints that encode symmetry,

clustering tendencies, and locality.

7

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Sanjali Yadav and Bahar Asgari

To generate labels for training, we performed spectral clustering

on each matrix across a range of k-values, collecting performance

metrics such as memory traffic and execution time. The k that

yielded the best trade-off between these metrics was recorded as the

optimal choice. The decision tree was trained using matrix features

as inputs and these optimal k-values as targets. Additionally, the

model predicts whether reordering should be applied, based on

whether the expected memory traffic reduction exceeds a threshold

(currently set to 10%). This threshold can be adjusted to suit specific

hardware constraints or application requirements.

Our decision tree model is trained on data from three distinct

accelerators, Flexagon, GAMMA, and Trapezoid, each with unique

hardware characteristics, including different PE counts, cache sizes,

and memory bandwidths (detailed in Section 4). The model predicts

when reordering will be beneficial and selects the optimal cluster

size for each architecture. By capturing these hardware-specific

traits, the decision tree effectively acts as a black-box predictor,

identifying both the applicability and the best configuration for

data reordering to maximize performance.

The training process for our model requires only a few minutes,

utilizing our dataset. To apply this method to a new accelerator,

one simply needs to execute relevant workloads on the accelerator

and collect performance metrics, typically execution latency and

memory traffic. The decision treemodel can then be trained on these

collected metrics to automatically infer the underlying hardware

characteristics of the accelerator and subsequently recommend

optimal cluster sizes.

BootesWorkflowSummary:Before SpGEMMexecution, Bootes

applies a lightweight preprocessing step to determine if matrix re-

ordering can reduce memory traffic and data movement. It extracts

structural features, such as density and nonzero distribution, and

feeds them into a decision tree model. The model predicts whether

reordering will be beneficial and selects the optimal k-value for

spectral clustering if needed. If reordering is advised, the matrix is

reordered and sent for computation; otherwise, it is processed in

its original form. With minimal inference overhead, Bootes ensures

efficient, data-driven decisions for boosting the efficiency of matrix

multiplication kernels.

4 Methodology
Baselines for Comparisons and Targeted Accelerators: We

evaluate Bootes in comparison with three state-of-the-art row re-

ordering algorithms includingGamma [77], Graph [4], andHier [27],

along with the baseline of no-reordering (Original). To demonstrate

the adaptability of Bootes, we integrated it with three state-of-

the-art hardware accelerators: GAMMA [77], Flexagon [46], and

Trapezoid [73] – to clarify, our experiments include both the row

reordering algorithm of Gamma and the hardware accelerator pro-

posed in GAMMA. We evaluate our results on an AMD EPYC 7302

processor, which has 16 cores and 32 threads, 22MB L3 cache, and

128GB of DRAM with a bandwidth of 204.8 GB/s. Our decision tree

was also trained on this system.

Simulator and Configurations: We use Trapezoid’s simula-

tor [73] to simulate our target accelerators and their components.

This includes modeling processing elements (PEs), data distribu-

tion, local buffers, global caches, and HBM, as described in their

Table 3: Sparse Matrices
ID Matrix Size Density

ET EternityII_Etilde 10k × 204k 5.70e-4

PO poisson3Da 14k × 14k 1.93e-3

IN invextr1_new 30k × 30k 1.94e-3

MI mixtank_new 30k × 30k 2.22e-3

CI cit-HepPh 35k × 35k 3.53e-4

BC bcircuit 69k × 69k 7.91e-5

CO copter2 55k × 55k 2.47e-4

NC ncvxqp5 63k × 63k 1.09e-4

SP sparsine 50k × 50k 6.20e-4

RA rajat15 37k × 37k 3.19e-4

K4 k49_norm_10NN 39k × 39k 4.16e-4

E4 e40r0100 17k × 17k 1.85e-3

HE helm3d01 32k × 32k 4.13e-4

EX ex3sta1 17k × 17k 2.41e-3

EA EAT_RS 23k × 23k 6.04e-4

MA Maragal_6 21k × 10k 2.49e-3

VI vibrobox 12k × 12k 1.99e-3

MS msc23052 23k × 23k 2.15e-3

OR Oregon-1 11k × 11k 3.55e-4

SH ship_001 35k × 35k 3.20e-3

SM sme3Da 13k × 13k 5.60e-3

TO tomographic1 73k × 59k 1.49e-4

OL olesnik0 88k × 88k 9.55e-5

MR mri2 63k × 147k 6.10e-05

DU Dubcova2 65k × 65k 2.44e-04

FO fome20 33k × 108k 6.35e-05

respective papers. The simulator meticulously tracks contention

and stalls, providing precise measurements of data movement and

memory traffic impacts in different accelerators. Our intention with

testing on different accelerators is to explore the relationship be-

tween the reduction in memory traffic and underlying hardware, as

each accelerator has different cache sizes and number of PEs. We

adjust configurations – such as the number of PEs, on-chip SRAM,

and HBM main memory – across various baseline scenarios to

demonstrate Bootes’ robust performance consistency under differ-

ent hardware configurations. Flexagon features a 1MB cache with

67 PEs, GAMMA includes a 3MB cache with 64 PEs, and Trapezoid

boasts a 4MB cache with 128 PEs.

It’s important to note that our reordering algorithm is not lim-

ited to accelerators with specific cache sizes, PE counts, or memory

bandwidth. Its main requirement is the use of a row-wise matrix

multiplication approach, common in modern SOTA sparse acceler-

ators, where rows of matrix B are accessed based on the column

indices of matrix A. While implementations may vary across ar-

chitectures, our method remains applicable as long as irregular

memory access from sparsity introduces notable overhead. Addi-

tionally, our decision tree model functions as a black-box predictor

that captures hardware-specific characteristics, enabling accurate

selection of optimal cluster sizes for effective data reordering.

Analysis of Algorithm 1 indicates that the Gamma reordering

method is significantly affected by variations in cache size. How-

ever, Bootes maintains consistent, robust performance across these

diverse configurations, distinguishing it from previous implemen-

tations. Additionally, we assess Bootes against a baseline where the

input matrix A is not reordered.

8

Bootes: Boosting the Efficiency of Sparse Accelerators Using Spectral Clustering MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
e

La
te

nc
y

k=2 k=4 k=8 k=16 k=32Design selected by model

Figure 3: Performance of various workloads for different
cluster sizes (normalized to best cluster size per workload).

Workloads: For the experimental evaluation, we use matrices

with diverse sparsity patterns from the SuiteSparse collection [7]

and SNAP [33] as listed in Table 3. We selected matrices that dis-

play unique sparsity patterns and are representative of real-world

matrices and graphs. By unique sparsity patterns, we mean ma-

trices representing diverse domains, dimensions, and symmetrical

patterns from SuiteSparse. This ensures the decision tree learns a

diverse range of patterns to be able to effectively evaluate the need

for preprocessing. Finally, in our evaluations, 𝐵 matrices are identi-

cal to 𝐴 but not reordered. For non-square 𝐴, we use 𝐵’s transpose

for multiplication. This methodology aligns with prior studies such

as GAMMA and Trapezoid, which we adopted for consistency in

evaluation.

Metrics: The primary objective of Bootes is to have a faster and

more efficient preprocessing to reduce off-chip memory traffic. To

achieve this, in addition to measuring metrics such as the ratio of

preprocessing time to actual computation time and the memory

footprint of preprocessing, we track memory traffic separately for

input matrices A and B, output matrix C, and total traffic. Memory

traffic is defined as the number of reads and writes to off-chip

memory during SpGEMM execution. Additionally, we record the

total compute cycles for SpGEMM processing. For preprocessing,

we track the time spent, including reading and writing operations,

and use memory profiling tools to monitor the minimum memory

allocation needed to avoid out-of-memory errors, which we define

as the memory footprint.

5 Results and Analysis
In this section, we present a comprehensive evaluation of our ap-

proach by examining several key dimensions. We begin with a

decision tree analysis. Next, we investigate memory traffic to high-

light how our approach optimizes data movement and its associated

overheads. We then explore scalability by assessing both the time

and memory footprint of the preprocessing phase, which is critical

for handling large and complex datasets. Finally, we quantify the

speedup achieved by our method, demonstrating its effectiveness

in enhancing overall computational efficiency.

5.1 Decision Tree Analysis
Our dataset is divided into a training set comprising 70% of the

data and a validation set comprising the remaining 30%. Many

matrices in SuiteSparse and SNAP exhibit a common structural

pattern, where most nonzero elements are concentrated along the

diagonals and minimal column intersections. As a result, a signif-

icant portion of the data points in our dataset are labeled as "no

reorder." This inherent class imbalance, where the majority of the

data tends towards not requiring row reordering, can introduce bias

into our model, skewing predictions towards the majority class. To

mitigate this bias, we employed class balancing techniques during

the training process of our decision tree model, ensuring that each

class (reordering vs. not reordering) is weighted equally to prevent

the model from being biased towards the dominant "no reorder"

class and ensure it can effectively predict whether reordering is

necessary.

Figure 3 presents execution time for matrices in the validation

set across different cluster sizes, normalized to the best-performing

configuration. The cluster size predicted by our model is indicated

with a star. In most cases, the model successfully identifies the opti-

mal configuration; in a few cases (e.g., helm3d01 and stokes128), it

selects a suboptimal size, but withminimal slowdowns of only 1.01×
and 1.05×, respectively. The figure underscores the impact of cluster

size selection—for instance, Andrews sees a 9.08× speedup when

using the optimal size over the worst-case. The model achieves 88%

accuracy and yields an overall geometric mean speedup of 1.38×
across the test set, relative to a baseline without clustering, by first

deciding whether to reorder and then selecting the cluster size.

Beyond accuracy and speedup, the figure highlights the com-

plexity of selecting optimal cluster sizes. For example, Maragal6

and Maragal7 share sparsity patterns but differ in size, leading to

different optimal choices. While larger matrices might seem to favor

larger clusters (e.g., 𝑘 = 32), Andrews, despite being larger than

Maragal7, performs best with a smaller size. Similarly, msc23052

and nsct both prefer 𝑘 = 4 despite differing in shape and spar-

sity. These cases illustrate that cluster size selection depends on

a nuanced interplay of sparsity, structure, and hardware behav-

ior, underscoring the need for data-driven models to make robust,

generalizable decisions.

Additionally, we chose a decision tree model because of its mini-

mal storage requirement of only 11KB, making it highly efficient

for dynamic prediction. This compact size is critical as we aim to

minimize the memory footprint on the host during preprocessing.

A lightweight model ensures that it does not overburden the on-

chip memory, allowing for faster execution without consuming

excessive resources.

5.2 Memory Traffic
Figure 4 shows traffic normalized to the compulsory traffic, which

refers to the traffic that all designs would incur with unbounded on-

chip memory, equivalent to reading the input matrices and writing

the output matrix. Each bar in the bar chart is divided into three

components: normalized traffic for reading Matrix A (in green),

normalized traffic for reading Matrix B (in red), and normalized

traffic for writing Matrix C (in blue).

9

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Sanjali Yadav and Bahar Asgari

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 M
em

or
y

Tr
af

fic Traffic A Traffic B Traffic C

0

10

20

30

40

50

N
or

m
al

iz
ed

 M
em

or
y

Tr
af

fic

0
5

10
15
20
25
30
35
40

12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345 12345

BC CI CO E4 EA ET EX HE IN K4 MR MI MS NC OR PO RA SM SP GMEAN

N
or

m
al

iz
ed

 M
em

or
y

Tr
af

fic

a. Flexagon

b. Gamma

c. Trapezoid

1: Boötes, 2: Gamma, 3: Graph, 4: Hier, 5: Original

Figure 4: Adaptability Analysis – Memory traffic breakdown when different row reordering methods, including Bootes, Gamma,
Graph, and Hier, are applied to three state-of-the-art accelerators, (a) Flexagon [46], (b) Gamma [77], and (c) Trapezoid [73].

Bootes significantly reduces off-chip memory traffic across three

accelerators: Flexagon, GAMMA, and Trapezoid. Specifically, Bootes

reduces traffic in Flexagon by factors of 1.67×, 1.55×, 1.95×, and
2.31× compared to Gamma, Graph, Hier, and Original, respectively;

in GAMMA, the reductions are 1.50×, 1.35×, 1.51×, and 1.67×; and
in Trapezoid, the improvements are 1.30×, 1.28×, 1.36×, and 1.38×.

We observe that Bootes demonstrates the highest improvement

on the Flexagon accelerator compared to the baselines, which aligns

with expectations given Flexagon’s smaller cache size. The limited

cache space results in more frequent evictions of rows from ma-

trix B, as it cannot hold a significant number of rows simultane-

ously. In contrast, Trapezoid, with roughly four times the cache size

of Flexagon, exhibits relatively smaller improvements. The larger

cache enables it to retain more rows of matrix B, allowing even

suboptimal reordering techniques to benefit from reduced memory

access, as the cache can still store sufficient rows for reuse.

Among the three baselines, Hier performs the least efficiently,

likely because of the fixed parameters used in candidate pair gen-

eration in LSH. Hier performs well when the parameters are well-

suited, as the initial candidate pairs exhibit high similarity, guiding

a more optimal clustering process. However, when the parameters

are misaligned, its performance deteriorates. Gamma, on the other

hand, is constrained by the window size W. In certain cases, the

window size aligns well with matrix patterns, leading to effective

sorting, while in other cases, it is less optimal. For smaller and

highly sparse matrices such as Oregon-1 (OR), bcircuit (BC), and
e40r0100 (E4), the algorithm is more effective because of the smaller

window size. As discussed in Gamma’s analysis, the global consis-

tency between windows is higher in such cases because the top and

bottom rows within each window are more similar, minimizing dis-

crepancies during the next-row selection for subsequent windows.

Lastly, Graph follows a greedy search strategy, selecting the row

with the highest similarity to the current one and adding it to the

final permutation. Like many greedy algorithms, Graph can be hit-

or-miss. Some matrix patterns, such as ex3sta1 (EX), invertex_new
(IN), and rajat15 (RA), are well-suited to this approach, leading to

optimal reordering. However, in other cases, such as EternityII_Et
(ET), Sparsine (SP), and citHepPh (CI), suboptimal reordering in-

creases off-chip memory traffic.

Bootes leverages a spectral clustering algorithm to map ma-

trix rows to a lower dimension to simplify the clustering problem,

allowing for more efficient reordering, and ultimately achieves

higher performance on these accelerators compared to existing

methods. By reducing off-chip memory traffic, Bootes potentially

enhances the efficiency of integrating the state-of-the-art accelera-

tors, as fetching data from the off-chip memory and moving data

to the compute units consumes significantly (e.g., up to ∼ 4000× to

64000×) more energy than pure computation [5, 6]. As a result, by

reducing memory traffic by 2.01×, 2.05×, and 1.69× compared to

the original use case of accelerators (without reordering the input

matrix), Bootes would potentially improve its energy efficiency.

5.3 Scalability
Figure 5 presents the preprocessing time and memory footprint for

Bootes and our baseline methods as we vary matrix density (bubble

10

Bootes: Boosting the Efficiency of Sparse Accelerators Using Spectral Clustering MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

1

10

100

1000

10000
0.

00
E+

00

4.
00

E+
08

8.
00

E+
08

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(s
)

Lo
g

Sc
al

e

1.
00

E+
09

1.
40

E+
09

1.
80

E+
09

Matrix Size

Boötes Gamma Graph Hier

1.
90

E+
09

2.
30

E+
09

2.
70

E+
09

3.
10

E+
09

3.
50

E+
09

3.
90

E+
09

4.
30

E+
09

4.
70

E+
09

5.
10

E+
09

5.
50

E+
09

5.
90

E+
09

6.
30

E+
09

6.
70

E+
09

7.
10

E+
09

7.
50

E+
09

7.
90

E+
09

8.
30

E+
09

8.
70

E+
09

9.
10

E+
09

9.
50

E+
09

9.
90

E+
09

1.
00

E+
09

1.
40

E+
09

1.
80

E+
09

Matrix Size

1.
90

E+
09

2.
30

E+
09

2.
70

E+
09

3.
10

E+
09

3.
50

E+
09

3.
90

E+
09

4.
30

E+
09

4.
70

E+
09

5.
10

E+
09

5.
50

E+
09

5.
90

E+
09

6.
30

E+
09

6.
70

E+
09

7.
10

E+
09

7.
50

E+
09

7.
90

E+
09

8.
30

E+
09

8.
70

E+
09

9.
10

E+
09

9.
50

E+
09

9.
90

E+
09

0
200
400
600
800

1000
1200
1400

0.
00

E+
00

4.
00

E+
08

8.
00

E+
08

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Figure 5: Scalability Analysis – The prepossessing time (top) and memory footprint (bottom) when the matrix size (x-axis) and
density (size of the bubbles) vary. A larger bubble means denser and the density varies from 3.78E-05 to 6.54E-03.

size) and size (on the x-axis). Bootes consistently achieves the lowest

preprocessing time as the matrices become denser (indicated by

larger bubbles) and as their size increases. The matrices, sourced

from real-world datasets in SuiteSparse [7] and SNAP [33], naturally

exhibit increased sparsity as their size grows, resulting in smaller

bubble sizes as the matrix size increases.

Bootes outperforms the baselines by reducing preprocessing

times by geometric mean factors of 10.2×, 1.95×, and 11.61× com-

pared to Gamma, Graph, and Hier, respectively. Notably, even as

the matrices become denser and larger, Bootes maintains consistent

preprocessing efficiency, showcasing its scalability across a wide

range of matrix types. This scalability stems from the same factors

contributing to its lower preprocessing-to-computation time ratio,

as discussed earlier. Preprocessing time is a critical factor in overall

computational efficiency, as it can be up to a thousand times more

expensive than a single matrix multiplication. This means that even

substantial improvements in the multiplication phase, such as mak-

ing it five times faster, may not compensate for the heavy upfront

cost unless the same sparsity pattern is reused in thousands of

multiplications. While methods like SpMM and SpMV often benefit

iterative computations, the same efficiency gains are not as readily

apparent for SpGEMM. Consequently, accelerating the preprocess-

ing stage is essential—it directly enhances performance by reducing

the initial computational burden and ultimately allows for more

balanced and resource-efficient processing in applications where

large-scale, sparse matrix operations are necessary.

In addition to reducing preprocessing time, Bootes boasts a lower

memory footprint, making it a widely applicable solution. Even

in offline scenarios, memory usage is a critical concern because

large, sparse matrices often require significant memory allocation

when using other preprocessing methods, which can frequently

lead to out-of-memory errors. Bootes effectively mitigates this is-

sue. The bottom part of Figure 5 illustrates the memory footprint,

defined as the minimum memory allocation required on the host.

Bootes reduces the memory footprint by a geometric mean factor

of 2.63×, 1.35×, and 2.10× compared to Gamma, Graph, and Hier,

respectively. The figure demonstrates that as matrix size and den-

sity increase, Bootes exhibits a lower memory footprint compared

to its counterparts, because of its more efficient memory allocation

and management strategies. This makes Bootes a more favorable

algorithm when scaling up the problem size for reordering.

In the bottom part of Figure 5, we can see that Hier shows an

almost linear increase in memory usage as matrix size increases.

This is because of the costly heap construction and the space needed

to store the hash tables and signatures. Gamma also experiences

high memory demands mainly because of the priority queue, which

must track priorities, and Gamma also keeps track of how many

other rows share a nonzero value in the same column coordinate.

Graph faces similar issues, as it must store this information as well

for the first iterative loop. However, instead of using a priority

queue, Graph uses a graph representation, which needs to store the

vertices, edges, and weight information.

Additionally, Gamma is the only algorithm where the final per-

mutations list 𝑃 is populated during the iterative loop rather than at

the end. This increases the maximum memory required at a specific

point in execution since 𝑃 must be allocated simultaneously be-

fore other structures can be freed. In Bootes, the primary memory

overhead comes from storing the similarity matrix and Laplacian

matrix. However, these matrices are kept in compressed formats to

reduce the memory footprint. Furthermore, the similarity matrix is

de-allocated after the Laplacian construction is complete to ensure

efficient memory management.

5.4 Speedup
Figure 6 displays the end-to-end speedup, considering both prepro-

cessing time and compute time, of the SpGEMM kernel for Bootes

11

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Sanjali Yadav and Bahar Asgari

0

10

20

30

Bo
öt

es
 S

pe
ed

up
 O

ve
r

Pr
io

r W
or

k

Gamma Graph Hier
34.19 45.53 53.12 49.95

Figure 6: The end-to-end speedup of Bootes over the prior studies.

and our baseline algorithms. Across various matrix patterns, sizes,

and sparsity levels, Bootes consistently demonstrates a speedup. In

particular, Bootes significantly reduces the ratio of preprocessing

time to actual compute time by factors of 13.41×, 1.96×, and 10.34×
compared to Gamma, Graph, and Hier, respectively. Preprocessing

comprises row reordering, matrix multiplication, and restoring the

matrix rows to their original order (post-processing). The post-

processing times are uniform across algorithms. Furthermore, the

row reordering has a minimal impact on the multiplication phase

execution time, as its primary objective is to minimize off-chip

memory access and data movement, thereby enhancing overall pro-

cessing efficiency. In other words, this approach does not adversely

affect performance; in particular, it does not increase execution

time. Rather, its impact on the multiplication phase is indirect: by

reducing memory traffic, data reaches the processing elements with

greater bandwidth, enabling more simultaneous computations and

ultimately enhancing computational throughput.

Bootes achieves high computational efficiency by limiting the

range of cluster sizes (k), reducing time complexity, and avoiding

iterative passes when k is small. Its closest competitor, Graph, lever-

ages matrix sparsity to efficiently construct and traverse sparse

graphs. In contrast, Gamma incurs overhead from maintaining a

priority queue with O(logn) updates. Hier is computationally ex-

pensive due to its need to initialize a max-heap based on pairwise

similarities, delaying merging until all candidates are processed.

While LSH in Hier efficiently narrows down candidate pairs via

hash-based bucketing, it does not compute similarity scores. These

must be calculated separately using Jaccard similarity, which in-

volves costly set operations (intersections and unions). Additionally,

during the merging process, many of these pairs may not contribute

meaningfully if they are not chosen as representative rows, which

inflates the algorithm’s overall complexity. Bootes avoids these

major bottlenecks, making it significantly more efficient than the

baselines.

Table 4 summarizes the geometric mean speedup of each re-

ordering algorithm across different accelerators. The values reflect

the speedup achieved by applying row-reordering preprocessing

Table 4: Geomean Speedup of each reordering algorithm
across accelerators.

Accelerator Bootes Gamma Graph Hier

Flexagon 1.74× 1.28× 1.30× 1.12×
GAMMA 1.35× 1.09× 1.15× 1.07×
Trapezoid 1.22× 1.05× 1.07× 1.02×

compared to no preprocessing. These results complement our ear-

lier findings, showing that Bootes consistently delivers the highest

speedup across all accelerators relative to other reordering methods.

6 Prior Work
The related studies discussed throughout this paper are just a

few examples among numerous recent efforts focusing on sparse

problems [1–3, 8–10, 12, 14–16, 18, 21, 23, 25, 26, 28, 29, 31, 35–

42, 46, 47, 49, 51–55, 57–60, 62, 64, 65, 67, 68, 70, 72, 74, 76, 78].

Sparsity-related studies employ a variety of techniques. Some fo-

cus on traditional methods such as systolic arrays [19, 20, 45, 63]

and adder trees [12, 55]. For instance, innovations such as DTC-

SpMM [11] optimize sparse operations for Tensor Cores, whereas

Conveyor [30] addresses mismatches between dense systolic ar-

rays and unstructured sparsity. Others propose hardware/software

co-designs that focus on prefetching or novel compression for-

mats [10, 29, 58, 59, 62, 69, 78]. Architectures such as HiRAC [56]

and Spada [38] apply hierarchical and adaptive designs to accelerate

SpGEMM. While these works aim to speed up sparse computation,

they often overlook preprocessing overhead—a key focus of Bootes.

Finally, recent efforts in sparse compilation [24, 71, 75] are orthog-

onal to our approach and may offer complementary benefits.

7 Conclusions
This paper introduced Bootes, which emphasizes the importance of

preprocessing steps for efficiently integrating sparse accelerators.

In particular, it focused on the preprocessing required for reducing

off-chip memory traffic, a crucial factor in the efficiency of today’s

accelerators. Bootes addressed this gap by leveraging a novel spec-

tral clustering approach to optimize row reordering, significantly

accelerating preprocessing time. Through integration with state-of-

the-art accelerators such as Flexagon, GAMMA, and Trapezoid, we

demonstrated Bootes’ adaptability and ability to consistently reduce

memory traffic across diverse workloads with varying sizes and

levels of density. In short, our results highlighted Bootes’ novelty

in combining preprocessing efficiency with memory traffic opti-

mization, setting a new standard for integrating sparse accelerators

in modern computing systems.

Acknowledgments
We gratefully acknowledge the support of US Department of Energy

(DoE), Office of Science under the Advanced Scientific Computing

Research (ASCR) Early Career Research Program (ECRP), Award

DE-SC0024079.

12

Bootes: Boosting the Efficiency of Sparse Accelerators Using Spectral Clustering MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

References
[1] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Sung-Kyu Lim, Hyesoon Kim, et al.

2021. Fafnir: Accelerating sparse gathering by using efficient near-memory

intelligent reduction. In HPCA. 908–920.
[2] Ubaid Bakhtiar, Helya Hosseini, and Bahar Asgari. 2024. Acamar: A dynamically

reconfigurable scientific computing accelerator for robust convergence and mini-

mal resource underutilization. In 2024 57th IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1601–1616.

[3] Ubaid Bakhtiar, Donghyeon Joo, and Bahar Asgari. 2025. Pipirima: Predicting

Patterns in Sparsity to Accelerate Matrix Algebra. In Proceedings of the 62nd
ACM/IEEE Design Automation Conference (DAC).

[4] Erfan Bank Tavakoli, Michael Riera, Masudul Hassan Quraishi, and Fengbo Ren.

2024. FSpGEMM: A Framework for Accelerating Sparse General Matrix–Matrix

Multiplication Using Gustavson’s Algorithm on FPGAs. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 32, 4 (2024), 633–644. https://doi.org/

10.1109/TVLSI.2024.3355499

[5] William Dally. 2021. The Future of Computing: Domain-Specific Architecture.

https://www.clsac.org/uploads/5/0/6/3/50633811/2021-clsac-dally.pdf. [Online;

accessed May-2023].

[6] William Dally. 2022. On the Model of Computation: Point: We Must Extend Our

Model of Computation to Account for Cost and Location. https://cacm.acm.org/

magazines/2022/9/263792-on-the-model-of-computation-point/abstract. [On-

line; accessed October-2022].

[7] Timothy A. Davis and Yifan Hu. 2011. The university of Florida sparse matrix

collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages. https:

//doi.org/10.1145/2049662.2049663

[8] Chunhua Deng, Yang Sui, Siyu Liao, Xuehai Qian, and Bo Yuan. 2021. Gospa: An

energy-efficient high-performance globally optimized sparse convolutional neu-

ral network accelerator. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 1110–1123.

[9] Matthew Denton and Herman Schmit. 2022. Direct Spatial Implementation of

Sparse Matrix Multipliers for Reservoir Computing. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 1–11.

[10] Yixiao Du, Yuwei Hu, Zhongchun Zhou, and Zhiru Zhang. 2022. High-

Performance Sparse Linear Algebra on HBM-Equipped FPGAs Using HLS: A Case

Study on SpMV. In Proceedings of the 2022 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 54–64.

[11] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2024. DTC-SpMM: Bridging the Gap

in Accelerating General Sparse Matrix Multiplication with Tensor Cores. In

Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. 253–267.

[12] Siying Feng, Xin He, Kuan-Yu Chen, Liu Ke, Xuan Zhang, David Blaauw, Trevor

Mudge, and Ronald Dreslinski. 2022. MeNDA: a near-memory multi-way merge

solution for sparse transposition and dataflows. In Proceedings of the 49th Annual
International Symposium on Computer Architecture. 245–258.

[13] Gelin Fu, Tian Xia, Shaoru Qu, Zhongpei Luo, Shuyu Li, Pengyu Cheng, Runfan

Guo, Yitong Ding, and Pengju Ren. 2023. PrSpMV: An Efficient Predictable Kernel

for SpMV. In 2023 IEEE 41st International Conference on Computer Design (ICCD).
IEEE, 448–456.

[14] Armin Gerami and Bahar Asgari. 2024. Gust: Graph edge-coloring utilization for

accelerating sparse matrix vector multiplication. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4. 127–141.

[15] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.

2019. SparTen: A sparse tensor accelerator for convolutional neural networks. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 151–165.

[16] Sumanth Gudaparthi, Sarabjeet Singh, Surya Narayanan, Rajeev Balasubramo-

nian, and Visvesh Sathe. 2022. CANDLES: Channel-Aware Novel Dataflow-

Microarchitecture Co-Design for Low Energy Sparse Neural Network Accel-

eration. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 876–891.

[17] Fred G Gustavson. 1978. Two fast algorithms for sparse matrices: Multiplication

and permuted transposition. ACM Transactions on Mathematical Software (TOMS)
4, 3 (1978), 250–269.

[18] Xin He, Kuan-Yu Chen, Siying Feng, Hun-Seok Kim, David Blaauw, Ronald

Dreslinski, and Trevor Mudge. 2022. Squaring the circle: Executing Sparse

Matrix Computations on FlexTPU—A TPU-Like Processor. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques.
148–159.

[19] Xin He, Kuan-Yu Chen, Siying Feng, Hun-Seok Kim, David Blaauw, Ronald

Dreslinski, and Trevor Mudge. 2023. Squaring the Circle: Executing Sparse

Matrix Computations on FlexTPU—A TPU-Like Processor. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques
(Chicago, Illinois) (PACT ’22). Association for Computing Machinery, New York,

NY, USA, 148–159. https://doi.org/10.1145/3559009.3569665

[20] XinHe, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park, Austin

Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, and Trevor Mudge. 2020.

Sparse-TPU: Adapting systolic arrays for sparse matrices. In Proceedings of the
34th ACM international conference on supercomputing. 1–12.

[21] XinHe, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park, Austin

Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, and Trevor Mudge. 2020.

Sparse-TPU: Adapting systolic arrays for sparse matrices. In Proceedings of the
34th ACM International Conference on Supercomputing. 1–12.

[22] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P.

Sadayappan. 2019. Adaptive sparse tiling for sparse matrix multiplication. In Pro-
ceedings of the 24th Symposium on Principles and Practice of Parallel Programming
(Washington, District of Columbia) (PPoPP ’19). Association for Computing Ma-

chinery, New York, NY, USA, 300–314. https://doi.org/10.1145/3293883.3295712

[23] Helya Hosseini, Ubaid Bakhtiar, Donghyeon Joo, and Bahar Asgari. 2025. Segin:

Synergistically Enabling Fine-Grained Multi-Tenant and Resource Optimized

SpMV. IEEE Computer Architecture Letters (2025).
[24] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun,

Joel S. Emer, Mark A. Horowitz, and Fredrik Kjølstad. 2023. The Sparse Abstract

Machine. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3. Association
for Computing Machinery, 710–726.

[25] Chao-Tsung Huang. 2021. Ringcnn: Exploiting algebraically-sparse ring tensors

for energy-efficient cnn-based computational imaging. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 1096–
1109.

[26] Abhishek Kumar Jain, Hossein Omidian, Henri Fraisse, Mansimran Benipal, Lisa

Liu, and Dinesh Gaitonde. 2020. A domain-specific architecture for accelerating

sparse matrix vector multiplication on fpgas. In 2020 30th International conference
on field-programmable logic and applications (FPL). IEEE, 127–132.

[27] Peng Jiang, Changwan Hong, and Gagan Agrawal. 2020. A novel data trans-

formation and execution strategy for accelerating sparse matrix multiplication

on GPUs. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (San Diego, California) (PPoPP ’20). As-
sociation for Computing Machinery, New York, NY, USA, 376–388. https:

//doi.org/10.1145/3332466.3374546

[28] Donghyeon Joo, Ramyad Hadidi, Soheil Feizi, and Bahar Asgari. 2024. Endor:

Hardware-Friendly Sparse Format for Offloaded LLM Inference. arXiv preprint
arXiv:2406.11674 (2024).

[29] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknod-

din Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez

Luna, and Onur Mutlu. 2019. SMASH: Co-designing Software Compression and

Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations. InMICRO.
ACM, 600–614.

[30] S. Kim, G. Byeon, S. Kim, H. Kim, and S. Hong. 2023. Conveyor: Towards Asyn-

chronous Dataflow in Systolic Array to Exploit Unstructured Sparsity. In 2023
IEEE 41st International Conference on Computer Design (ICCD). IEEE Computer

Society, 423–431. https://doi.org/10.1109/ICCD58817.2023.00070

[31] HT Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing sparse convo-

lutional neural networks for efficient systolic array implementations: Column

combining under joint optimization. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 821–834.

[32] Jong Hun Lee, Beomjin Park, Joonho Kong, and Arslan Munir. 2022. Row-Wise

Product-Based Sparse Matrix Multiplication Hardware Accelerator With Optimal

Load Balancing. IEEE Access 10 (2022), 64547–64559. https://doi.org/10.1109/

ACCESS.2022.3184116

[33] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[34] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
Massive Datasets (2nd ed.). Cambridge University Press, USA.

[35] Gang Li, Weixiang Xu, Zhuoran Song, Naifeng Jing, Jian Cheng, and Xiaoyao

Liang. 2022. Ristretto: An Atomized Processing Architecture for Sparsity-

Condensed Stream Flow in CNN. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 1434–1450.

[36] Shiyu Li, Edward Hanson, Xuehai Qian, Hai" Helen" Li, and Yiran Chen. 2021.

ESCALATE: Boosting the efficiency of sparse CNN accelerator with kernel de-

composition. In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture. 992–1004.

[37] Shiqing Li, Di Liu, and Weichen Liu. 2021. Optimized Data Reuse via Reordering

for SparseMatrix-VectorMultiplication on FPGAs. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[38] Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng, Yuan Xie,

and Mingyu Gao. 2023. Spada: Accelerating Sparse Matrix Multiplication with

Adaptive Dataflow. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,

New York, NY, USA, 747–761. https://doi.org/10.1145/3575693.3575706

13

https://doi.org/10.1109/TVLSI.2024.3355499
https://doi.org/10.1109/TVLSI.2024.3355499
https://www.clsac.org/uploads/5/0/6/3/50633811/2021-clsac-dally.pdf
https://cacm.acm.org/magazines/2022/9/263792-on-the-model-of-computation-point/abstract
https://cacm.acm.org/magazines/2022/9/263792-on-the-model-of-computation-point/abstract
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3559009.3569665
https://doi.org/10.1145/3293883.3295712
https://doi.org/10.1145/3332466.3374546
https://doi.org/10.1145/3332466.3374546
https://doi.org/10.1109/ICCD58817.2023.00070
https://doi.org/10.1109/ACCESS.2022.3184116
https://doi.org/10.1109/ACCESS.2022.3184116
http://snap.stanford.edu/data
https://doi.org/10.1145/3575693.3575706

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Sanjali Yadav and Bahar Asgari

[39] Bowen Liu and Dajiang Liu. 2023. Towards High-Bandwidth-Utilization SpMV

on FPGAs via Partial Vector Duplication. In Proceedings of the 28th Asia and South
Pacific Design Automation Conference (ASP-DAC). 33–38.

[40] Hang Lu, Liang Chang, Chenglong Li, Zixuan Zhu, Shengjian Lu, Yanhuan Liu,

and Mingzhe Zhang. 2021. Distilling bit-level sparsity parallelism for general

purpose deep learning acceleration. In MICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 963–976.

[41] Kai Lu, Zhaoshi Li, Leibo Liu, Jiawei Wang, Shouyi Yin, and Shaojun Wei. 2019.

Redesk: A reconfigurable dataflow engine for sparse kernels on heterogeneous

platforms. In 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 1–8.

[42] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun

Liang. 2021. Sanger: A co-design framework for enabling sparse attention using

reconfigurable architecture. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture. 977–991.

[43] Yuechen Lu and Weifeng Liu. 2023. DASP: Specific Dense Matrix Multiply-

Accumulate Units Accelerated General Sparse Matrix-Vector Multiplication. In

Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). 1–14.

[44] Peter Macgregor and He Sun. 2022. A Tighter Analysis of Spectral Clustering,

and Beyond. arXiv:2208.01724 [cs.DS] https://arxiv.org/abs/2208.01724

[45] Euripides Montagne and Rina Surós. 2019. Systolic Sparse Matrix Vector Multi-

ply in the Age of TPUs and Accelerators. In 2019 Spring Simulation Conference
(SpringSim). 1–10. https://doi.org/10.23919/SpringSim.2019.8732860

[46] Francisco Muñoz Martínez, Raveesh Garg, Michael Pellauer, José L. Abellán,

Manuel E. Acacio, and Tushar Krishna. 2023. Flexagon: A Multi-dataflow Sparse-

Sparse Matrix Multiplication Accelerator for Efficient DNN Processing. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (, Vancouver, BC,

Canada,) (ASPLOS 2023). Association for Computing Machinery, New York, NY,

USA, 252–265. https://doi.org/10.1145/3582016.3582069

[47] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng Liu.

2022. TileSpGEMM: a tiled algorithm for parallel sparse general matrix-matrix

multiplication on GPUs. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 90–106.

[48] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng Liu.

2022. TileSpGEMM: a tiled algorithm for parallel sparse general matrix-matrix

multiplication on GPUs. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (Seoul, Republic of Korea)

(PPoPP ’22). Association for Computing Machinery, New York, NY, USA, 90–106.

https://doi.org/10.1145/3503221.3508431

[49] Nebil Ozer, Gregory Kollmer, Ramyad Hadidi, and Bahar Asgari. 2025. La Superba:

Leveraging a Self-Comparison Method to Understand the Performance Benefits

of Sparse Acceleration Optimizations. In 2025 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 1–12.

[50] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-

ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,

and Ronald Dreslinski. 2018. OuterSPACE: An Outer Product Based Sparse Ma-

trix Multiplication Accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 724–736. https://doi.org/10.1109/

HPCA.2018.00067

[51] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying

Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and

Ronald Dreslinski. 2018. OuterSPACE: An Outer Product based Sparse Matrix

Multiplication Accelerator. In HPCA. IEEE, 724–736.
[52] Eric Qin, Geonhwa Jeong, William Won, Sheng-Chun Kao, Hyoukjun Kwon,

Sudarshan Srinivasan, Dipankar Das, Gordon E Moon, Sivasankaran Rajaman-

ickam, and Tushar Krishna. 2021. Extending sparse tensor accelerators to support

multiple compression formats. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 1014–1024.

[53] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-

vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse

and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.

In HPCA.
[54] Dheeraj Ramchandani, Bahar Asgari, and Hyesoon Kim. 2023. Spica: Exploring

FPGA Optimizations to Enable an Efficient SpMV Implementation for Compu-

tations at Edge. In 2023 IEEE International Conference on Edge Computing and
Communications (EDGE). IEEE, 36–42.

[55] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz

Franchetti. 2019. Efficient SpMV Operation for Large and Highly Sparse Matrices

using Scalable Multi-way Merge Parallelization. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 347–358.

[56] Hesam Shabani, Abhishek Singh, Bishoy Youhana, and Xiaochen Guo. 2023.

HIRAC: A Hierarchical Accelerator with Sorting-based Packing for SpGEMMs in

DNN Applications. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 247–258. https://doi.org/10.1109/HPCA56546.

2023.10070977

[57] Björn Sigurbergsson, Tom Hogervorst, Tong Dong Qiu, and Razvan Nane. 2019.

Sparstition: a partitioning scheme for large-scale sparse matrix vector multiplica-

tion on FPGA. In 2019 IEEE 30th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), Vol. 2160. IEEE, 51–58.

[58] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. 2022. Serpens: A high

bandwidth memory based accelerator for general-purpose sparse matrix-vector

multiplication. In Proceedings of the 59th ACM/IEEE design automation conference.
211–216.

[59] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and

Jason Cong. 2022. Sextans: A streaming accelerator for general-purpose sparse-

matrix dense-matrix multiplication. In Proceedings of the 2022 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays. 65–77.

[60] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise

product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[61] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-

Wise Product. In 2020 53rd Annual IEEE/ACM International Symposium onMicroar-
chitecture (MICRO). 766–780. https://doi.org/10.1109/MICRO50266.2020.00068

[62] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi,

and Zhiru Zhang. 2020. Tensaurus: A versatile accelerator for mixed sparse-dense

tensor computations. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 689–702.

[63] Minjin Tang, Mei Wen, Yasong Cao, Junzhong Shen, Jianchao Yang, Jiawei Fei,

Yang Guo, and Sheng Liu. 2023. Mentha: Enabling Sparse-Packing Computation

on Systolic Arrays. In Proceedings of the 51st International Conference on Parallel
Processing (Bordeaux, France) (ICPP ’22). Association for Computing Machinery,

NewYork, NY, USA, Article 18, 11 pages. https://doi.org/10.1145/3545008.3545053

[64] Chaithanya Krishna Vadlamudi and Bahar Asgari. 2024. Electra: Eliminating

the Ineffectual Computations on Bitmap Compressed Matrices. IEEE Computer
Architecture Letters (2024).

[65] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spatten: Efficient sparse atten-

tion architecture with cascade token and head pruning. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 97–110.

[66] Xiaoqian Wang, Feiping Nie, and Heng Huang. 2016. Structured Doubly

Stochastic Matrix for Graph Based Clustering: Structured Doubly Stochastic

Matrix. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 1245–1254.

https://doi.org/10.1145/2939672.2939805

[67] YangWang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen Leng.

2021. Dual-side sparse tensor core. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 1083–1095.

[68] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,

and Yuan Xie. 2021. SpaceA: Sparse matrix vector multiplication on processing-in-

memory accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 570–583.

[69] Z. Xue, M. Wen, Z. Chen, Y. Shi, M. Tang, J. Yang, and Z. Luo. 2023. Releasing the

Potential of Tensor Core for Unstructured SpMM using Tiled-CSR Format. In 2023
IEEE 41st International Conference on Computer Design (ICCD). IEEE Computer

Society, 457–464. https://doi.org/10.1109/ICCD58817.2023.00076

[70] Sanjali Yadav and Bahar Asgari. 2025. DynaFlow: AnML Framework for Dynamic

Dataflow Selection in SpGEMM accelerators. IEEE Computer Architecture Letters
(2025).

[71] Tao Yang, Yiyuan Zhou, Qidong Tang, Feng Xu, Hui Ma, Jieru Zhao, and Li Jiang.

2023. SpMMPlu: A Compiler Plug-in with Sparse IR for Efficient Sparse Matrix

Multiplication. In 2023 60th ACM/IEEE Design Automation Conference (DAC). 1–6.
https://doi.org/10.1109/DAC56929.2023.10247957

[72] Yifan Yang, Joel S Emer, and Daniel Sanchez. 2021. Spzip: architectural support

for effective data compression in irregular applications. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 1069–
1082.

[73] Y. Yang, J. S. Emer, and D. Sanchez. 2024. Trapezoid: A Versatile Accelerator

for Dense and Sparse Matrix Multiplications. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). IEEE Computer Society,

Los Alamitos, CA, USA, 931–945. https://doi.org/10.1109/ISCA59077.2024.00072

[74] Amir Yazdanbakhsh, Ashkan Moradifirouzabadi, Zheng Li, and Mingu Kang.

2022. Sparse Attention Acceleration with Synergistic In-Memory Pruning and

On-Chip Recomputation. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 744–762.

[75] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. Sparsetir:

Composable abstractions for sparse compilation in deep learning. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 660–678.

[76] Shulin Zeng, Yujun Lin, Shuang Liang, Junlong Kang, Dongliang Xie, Yi Shan,

Song Han, YuWang, and Huazhong Yang. 2019. A fine-grained sparse accelerator

for multi-precision DNN. In Proceedings of the 2019 ACM/SIGDA International

14

https://arxiv.org/abs/2208.01724
https://arxiv.org/abs/2208.01724
https://doi.org/10.23919/SpringSim.2019.8732860
https://doi.org/10.1145/3582016.3582069
https://doi.org/10.1145/3503221.3508431
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/HPCA56546.2023.10070977
https://doi.org/10.1109/HPCA56546.2023.10070977
https://doi.org/10.1109/MICRO50266.2020.00068
https://doi.org/10.1145/3545008.3545053
https://doi.org/10.1145/2939672.2939805
https://doi.org/10.1109/ICCD58817.2023.00076
https://doi.org/10.1109/DAC56929.2023.10247957
https://doi.org/10.1109/ISCA59077.2024.00072

Bootes: Boosting the Efficiency of Sparse Accelerators Using Spectral Clustering MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Symposium on Field-Programmable Gate Arrays. 185–185.
[77] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. 2021. Gamma:

leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In

Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21).

Association for Computing Machinery, New York, NY, USA, 687–701. https:

//doi.org/10.1145/3445814.3446702

[78] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. Sparch:

Efficient architecture for sparse matrix multiplication. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 261–274.

15

https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1145/3445814.3446702

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Dataflows and the Favorable One Used in Recent Sparse Accelerators: Row-wise Product
	2.2 Drawbacks of Row-wise Product and Prior Solutions: Tiling and Row Reordering
	2.3 Summary of Our Targeted Challenges

	3 Bootes
	3.1 Spectral Clustering
	3.2 Decision Tree

	4 Methodology
	5 Results and Analysis
	5.1 Decision Tree Analysis
	5.2 Memory Traffic
	5.3 Scalability
	5.4 Speedup

	6 Prior Work
	7 Conclusions
	Acknowledgments
	References

