DynaFlow: An ML Framework for Dynamic
Dataflow Selection in SpGEMM accelerators

Sanjali Yadav, Bahar Asgari
University of Maryland, College Park

Abstract—Sparse matrix-matrix multiplication (SpGEMM) is
a critical operation in numerous fields, including scientific com-
puting, graph analytics, and deep learning, leveraging matrix
sparsity to reduce both storage and computation costs. However,
the irregular structure of sparse matrices poses significant
challenges for performance optimization. Existing hardware
accelerators often employ fixed dataflows designed for specific
sparsity patterns, leading to performance degradation when the
input deviates from these assumptions. As SpGEMM adoption
expands across a broad spectrum of sparsity workloads, the
demand grows for accelerators capable of dynamically adapting
their dataflow schemes to diverse sparsity patterns. To address
this, we propose DynaFlow, a machine learning-based framework
that trains on the set of dataflows supported by any given
accelerator and learns to predict the optimal dataflow based
on the input sparsity pattern. By leveraging decision trees and
deep reinforcement learning, DynaFlow surpasses static dataflow
selection approaches, achieving up to a 50x speedup.

Index Terms—SpGEMM accelerators, Dynamic Dataflow Se-
lection, Reinforcement Learning, Decision Trees

I. INTRODUCTION

Sparse matrix-matrix multiplication (SpGEMM) is a foun-
dational kernel for a wide range of applications, including
scientific computing, graph analytics, and machine learning.
Sparse computations leverage the structure of input matrices
by efficiently discarding ineffectual zero elements, thereby
reducing storage overhead and computational load. However,
the irregular structure of sparse matrices often leads to un-
derutilized compute resources and memory bandwidth, posing
significant challenges for fast and efficient processing.

To address the inefficiency challenges associated with spar-
sity, recent studies have developed various specialized hard-
ware accelerators customized for the three widely recog-
nized SpGEMM execution dataflow schemes: inner product
(IP) [1], [2], outer product (OP) [3], [4], and row-wise product
(RW) [5], [6]. These state-of-the-art hardware accelerators,
however, are optimized for specific sparsity patterns that best
utilize their underlying hardware architecture. They employ a
fixed execution dataflow scheme. As a result, the performance
is sub-optimal if the sparsity of the workload does not align
with the rigid design of the accelerator.

To overcome these limitations, more recent designs aim
to build versatile accelerators capable of adapting to a wide
range of sparsity regimes. For instance, Trapezoid [7] intro-
duces novel dataflows schemes to support a broad range of
sparsity levels, while Flexagon [8] employs a reconfigurable
architecture to handle diverse sparse workloads. Although
these architectures represent an important step toward general-
purpose sparse acceleration, they still lack key capabilities. In

particular, neither provides a robust mechanism for selecting
the optimal dataflow based on the input matrices. Flexagon
relies on a simple offline profiling method, deferring the
challenge of comprehensive dataflow selection to future work.
Trapezoid, while supporting multiple dataflows, offers no
dynamic strategy for selecting among them at runtime.

The problem of dynamic dataflow selection aligns naturally
with machine learning (ML) techniques commonly used in
data classification. By extracting features from sparse input
matrices, it becomes possible to classify them into categories
corresponding to different dataflow schemes. Building on
this idea, DynaFlow introduces an ML-based framework for
dynamic sparse acceleration, offering an adaptive and effective
alternative to static hardware solutions. DynaFlow can be
integrated with any accelerator that supports multiple dataflow
schemes, including standard ones such as IP, OP, and RW, as
well as novel designs such as Trapezoid’s. The framework is
supported by a dataset of 19,000 sparse matrices with varying
sparsity levels, sourced from SuiteSparse [9] and pruned DNN
models, and includes a hardware-agnostic feature set.

DynaFlow offers two predictive models: a lightweight deci-
sion tree for efficient deployment and a reinforcement learning
(RL) model that captures more complex relationships for
improved accuracy. The framework trains on the accelerator’s
available dataflows and learns to quickly predict the most
suitable scheme for a given input. In a case study using an
accelerator supporting IP, OP, and RW dataflows, a lightweight
512B DynaFlow model achieved up to a 50x speedup over
static dataflow selection. When applied to Trapezoid’s archi-
tecture, the framework attains 88% accuracy in predicting
the optimal dataflow, highlighting its potential to significantly
improve performance in dynamic sparse workloads.

1.00E+07

39.2x O--IP =4--OP ---RW
© 1.00E+06
3 S
& 1.00E+05 2
)
= 1.00E+04 g
% 8 |
D 1.00E+03 i@}
3]
& 1008402 |0
c el
S 1.00E+01
2
8 1.00E+00
(0] o N o G} 2 S} $ >
< q,bb A & P 300? ~9°? & & &
i & S & & & &
& & & « S S &
& & & &

Workload

Fig. 1: The Impact of Dataflow Selection - Performance
gains from dynamic dataflow switching.

[DF: Dataflow M: Metric O: Reward Function ~ S:State A:Action R:Reward]
Dataset @ ."";';9 Analysis (2] S, ML MODELS ©
_— AB Feature Extraction: < xq, X3, X3, ... X, > ——
2 DF, E] A
5 DF, | [| 0 | Riyq
_u || DF LM, | Reward Processor

Fig. 2: DynaFlow High-Level Framework- Extracting features from sparse matrices, evaluating performance through
simulation, and updating ML models for efficient runtime decisions.

II. DYNAMIC DATAFLOW SELECTION

We present the primary motivation for dynamically selecting
dataflows by simulating an accelerator that supports IP, OP,
and RW dataflow modes. To evaluate performance, we use
matrices from the SuiteSparse collection [9], each multiplied
by its own transpose. These matrices span a wide range of
dimensions, sparsity levels, and structural patterns. Figure 1
shows the total execution cycles for each dataflow mode across
these diverse workloads.

As illustrated in Figure 1, no single dataflow consistently
achieves optimal performance across all workloads. Each
matrix exhibits distinct sparsity characteristics, such as density
and pattern regularity, that critically influence dataflow effi-
ciency. Selecting the optimal dataflow can yield substantial
speedups, while a static accelerator limited to one dataflow
cannot fully exploit the diverse sparsity structures. Each
dataflow is optimized to maximize operand reuse at different
granularities. For instance, RW benefits from higher reuse in
matrix B when it is denser, whereas IP suffers when both
matrices are highly sparse because of limited intersections
between rows and columns. Similar patterns hold for newer
Trapezoid-based dataflows, where each dataflow excels only
for specific workload types.

Recognizing these sparsity patterns and dynamically adapt-
ing the dataflow at runtime enables significant performance
gains. By tailoring dataflow selection to the workload’s struc-
tural characteristics, a dynamic accelerator can substantially
outperform static configurations, highlighting the critical role
of flexible dataflow strategies in sparse matrix processing.

III. WORKFLOW OF DYNAFLOW

To train and evaluate our machine learning models, we
require a dataset of sparse matrices along with their charac-
teristic features. As no such dataset exists, we constructed one
using real-world matrices from the SuiteSparse collection [9],
which spans domains such as electromagnetics, fluid dynam-
ics, and chemical process simulation. These matrices vary in
size and sparsity patterns. To further diversify the dataset, we
also included matrices extracted from pruned layers of deep
neural networks (DNNs) at different sparsity levels.

Figure 2 illustrates DynaFlow’s workflow. DynaFlow takes
as input a simulator that models various dataflows (DF') and
outputs performance metrics (M) such as latency, energy
consumption, and resource utilization. These metrics evaluate
dataflow efficiency on given workloads. For demonstration, we

developed a sparse matrix multiplication simulator supporting
IP, OP, and RW dataflows, reporting latency and processing
element utilization. This simulator is integrated into DynaFlow
to initiate model training, which can target either a decision
tree or a reinforcement learning model.

The training process begins by reading matrices from the
dataset @) and extracting their features @). Features for newly
added matrices are computed in real time. These features are
packed into a state vector S;, which is fed into the model Q
During early training, when model weights are uninitialized,
the agent operates in an exploration phase, randomly selecting
actions A;, each corresponding to a different dataflow. As
training progresses, the model enters the exploitation phase,
making decisions based on updated weights. The selected
action A, is passed to the simulator, which runs the chosen
dataflow and reports performance metrics @). A reward func-
tion (6) then computes a scalar reward based on these metrics,
guiding model updates. The reward function is configurable,
allowing different weights for optimizing specific objectives.

In contrast, training the decision tree model follows a super-
vised approach. Each matrix is evaluated under all available
dataflows, and performance metrics are collected. The dataflow
with the best performance is labeled as the optimal choice,
creating a labeled dataset, which trains the decision tree to map
matrix features to optimal dataflows. Once trained, DynaFlow
produces a lightweight model capable of making fast, informed
dataflow decisions at runtime on real-world workloads.

IV. EVALUATIONS & RESULTS
A. Feature Selection

Our feature set, detailed in Table I, comprises 11 distinct
features, counting those for matrices A and B separately.
The table also highlights the specific characteristics each
feature captures in terms of sparsity and structural patterns.
The overarching goal of this feature set is to characterize
the relationship between input matrix properties and dataflow
efficiency. For instance, in our simulator, the RW dataflow
performs better when the variation in column length is low,
as high variance implies more irregular and potentially costly
memory accesses to matrix B. Importantly, these features
remain relevant even when new dataflows are introduced,
as they reflect general patterns in how rows and columns
are scheduled during computation. This generality allows the
same feature set to be used across different dataflows; for

TABLE I: Features of our dataset.

Feature Description

Captures

Sparsity of A & B

Total nonzero in matrix / size of matrix

Overall sparsity level

Average row length of A & B

Average number of nonzero per row

Data distribution across rows

Average column length of A & B

Average number of nonzero per column

Data distribution across columns

Average row length variance of A & B

Variance in average number of nonzero per row

Irregularity and imbalance among rows

Average column length variance of A & B

Variance in average number of nonzero per column

Irregularity and imbalance among columns

Blocks accessed of B

Blocks of B accessed not in on-chip memory

Data movement from off-chip memory

example, we successfully reused this set to train models for
the Trapezoid dataflow.

To support lightweight machine learning models, DynaFlow
includes a mechanism to automatically prune less impactful
features during training. We first train a decision tree on the
full feature set, measure feature importance, and select the
most influential features, as shown in Figure 3. Based on this
analysis, five features are retained: blocks accessed, average
row length variance of A, average column length of B, and the
sparsities of A and B. Reducing the feature set lowers model
metadata and storage requirements, enabling more efficient
deployment, while retaining the full set may be preferable
when maximizing predictive accuracy is the primary goal.

Average column length variance B []
Average column length variance A [
Average row length variance B []
Average row length variance A |]
Average column lengthB []
Average column lengthA []
Average row lengthB []
Average row length A []
Blocks accessed |]
SparsityB []
SparsityA [
0 0.1 0.2 0.3 0.4
Feature Importance

Fig. 3: Feature Selection — Analysis of the feature importance
in the decision tree.

B. Decision Tree Model

We evaluate our framework by first training a decision
tree model on our simulator, using the pruned feature set.
The dataset is partitioned into 70% training and 30% testing
samples. To assess the model’s performance and robustness,
we employ k-fold cross-validation. The decision tree achieves
an accuracy of 90%, with a precision score of 88% and a
recall score of 89%, all computed using a weighted average.
Additionally, the final model requires only 512 bytes of
storage, making it highly efficient for deployment in resource-
constrained environments.

Figure 4 compares the performance of decision tree predic-
tions against the baseline IP, OP, and RW dataflows on the test
set. Each subfigure shows the speedup achieved by selecting
the predicted dataflow over using a fixed static dataflow. The
red line denotes a speedup of 1, indicating cases where the
predicted and static dataflows perform equally—that is, the
static dataflow was already optimal and correctly identified.
Speedups greater than 1 reflect cases where the predicted
dataflow outperformed the static one, while values below 1
indicate a less optimal choice. In most cases, the speedup is
equal to or greater than 1, demonstrating the model’s ability
to accurately predict and improve dataflow selection.

In terms of performance gains, the trained decision tree
model achieves average (geometric mean) speedups of 1.93x
over IP, 1.27x over OP, and 2.28x over RW across the
dataset. These results indicate that, rather than relying on a
static accelerator with a fixed execution dataflow, dynamically
selecting the dataflow based on the characteristics of the input
matrices can lead to substantial performance improvements.

C. Reinforcement Learning Model

We also train a RL model to compare its performance with
that of the decision tree. The core of the RL model is a neural
network that maps the current state (i.e., features of the input)
to an appropriate action. To minimize storage requirements, the
network is designed with a single hidden layer and comprises
9,219 parameters. Despite these optimizations, the RL model
requires 38 KB of storage, which is expected due to the addi-
tional metadata necessary to support learning and exploration
during training. Consequently, in terms of storage footprint,
the decision tree remains the more lightweight option.

Similar to the decision tree evaluation, we partition the
dataset into training and testing sets to assess the RL model’s
performance gains. Figure 5 presents the performance of the
RL model across the IP, OP, and RW dataflows. The subfigures
are configured identically to those used in the decision tree
evaluation. We observe that a greater number of data points
lie above the red line, with fewer below it, compared to the
decision tree evaluation. This trend indicates that the RL. model
has learned a more efficient mapping from input features to
optimal dataflows, likely due to its ability to store and leverage
additional metadata. On average, the RL model achieves
substantial improvements, with geometric mean speedups of
3.77x over IP, 2.48 x over OP, and 4.46 x over RW. Therefore,
while the RL model outperforms the decision tree by better
capturing complex feature—dataflow relationships, it does so
at the cost of higher storage requirements. Depending on
system constraints and performance goals, either model may
be preferable for deployment.

V. CONCLUSIONS AND DISCUSSIONS

This paper set out to explore how machine learning can op-
timize dataflow selection for SpGEMM. We investigated two
complementary approaches: decision trees and reinforcement
learning models. The methodology we developed for identify-
ing the optimal dataflow is designed to be versatile, enabling
adaptation across a wide range of hardware accelerators that
dynamically select dataflows based on workload characteris-
tics. Although dataflow specific implementations may vary
depending on the accelerator architecture, the fundamental
workflow aligns with the design principles established in the
DynaFlow framework.

Inner Product

Outer Product

Row-wise Product

® oo {

Speedup over IP
Speedup over OP

i

Speedup over RW

Test Workload

PO 0o
Test Workload

Test Workload

Fig. 4: Decision Tree Evaluation— The speedup of the decision tree model over applying IP, OP and RW for SpGEMM
operations across all test workload. NOTE: Y-axis has been clipped for illustration purposes.

Inner Product

Row-wise Product

L) -
X
o L

Speedup over IP
Speedup over OP

Speedup over RW

Test Workload

Fig. 5: Reinforcement Learning Evaluation— The speedup of the reinforcement learning model over applying IP, OP and

RW for SpGEMM operations across all test workloads.

This work represents an important step toward intelli-
gent, adaptive hardware design for SpGEMM acceleration.
DynaFlow demonstrates significant advantages over static
dataflow configurations, offering users the flexibility to choose
between a lightweight decision tree model for minimal storage
overhead or a reinforcement learning model that delivers su-
perior speedups at the cost of additional storage. By providing
a unified framework for data-driven dataflow selection, we set
the foundation for further innovations in adaptive computing
systems such as Acamar [10]. Our ongoing work continues to
extend these ideas, pushing the frontiers of efficient, intelligent
hardware-software co-design.

ACKNOWLEDGMENTS

This work is supported by the U.S. DoE, Office of Science,
ACSR, the ECRP program, under Award DE-SC0024079.

REFERENCES

[1] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 58-70.

[2] D. Baek, S. Hwang, T. Heo, D. Kim, and J. Huh, “Innersp: A memory

efficient sparse matrix multiplication accelerator with locality-aware

inner product processing,” in 2021 30th International Conference on

Parallel Architectures and Compilation Techniques (PACT), 2021, pp.

116-128.

S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,

H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace:

An outer product based sparse matrix multiplication accelerator,” in

2018 IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2018, pp. 724-736.

[3

—

[4] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient ar-
chitecture for sparse matrix multiplication,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020,
pp. 261-274.

[5] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:

A sparse-sparse matrix multiplication accelerator based on row-wise

product,” in 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2020, pp. 766-780.

G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: leveraging

gustavson’s algorithm to accelerate sparse matrix multiplication,”

in Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS ’21. New York, NY, USA: Association

for Computing Machinery, 2021, p. 687-701. [Online]. Available:

https://doi.org/10.1145/3445814.3446702

Y. Yang, J. S. Emer, and D. Sanchez, “Trapezoid: A versatile accelerator

for dense and sparse matrix multiplications,” in 2024 ACM/IEEE 51st

Annual International Symposium on Computer Architecture (ISCA).

Los Alamitos, CA, USA: IEEE Computer Society, jul 2024, pp.

931-945. [Online]. Available: https://doi.ieeecomputersociety.org/10.

1109/ISCA59077.2024.00072

[8] F. Muiioz Martinez, R. Garg, M. Pellauer, J. L. Abellan, M. E.
Acacio, and T. Krishna, “Flexagon: A multi-dataflow sparse-
sparse matrix multiplication accelerator for efficient dnn processing,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 252-265. [Online].
Available: https://doi.org/10.1145/3582016.3582069

[91 T. A. Davis and Y. Hu, “The university of florida sparse matrix

collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.

[Online]. Available: https://doi.org/10.1145/2049662.2049663

U. Bakhtiar, H. Hosseini, and B. Asgari, “Acamar: A dynamically

reconfigurable scientific computing accelerator for robust convergence

and minimal resource underutilization,” in 2024 57th IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), 2024, pp. 1601-

1616.

[6

—

[7

—

(10]

