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Abstract
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to provide that flexibility. We present Misam, a machine learn- [ e L
ing framework that addresses these challenges to enable adaptive T|| Analytics 1
and hardware-efficient SpGEMM acceleration. Misam employs a N b 4
lightweight decision tree to dynamically predict the optimal hard- S~
ware configuration from matrix features. To overcome hardware 0 HS MS D
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underutilization, Misam leverages FPGA reconfigurability to de-
ploy specialized, resource-efficient bitstreams on demand. This
process is governed by an intelligent reconfiguration engine that
evaluates whether the anticipated performance gain justifies the
overhead of switching hardware configurations. Misam’s dynamic
approach yields up to a 10.76x speedup by judiciously reconfigur-
ing. Misam demonstrates that a synergistic combination of machine
learning-based prediction and judicious hardware reconfiguration
can achieve high performance across a wide spectrum of spar-
sity patterns, bridging the gap between specialized efficiency and
general-purpose adaptability.
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1 Introduction

Sparse matrix-matrix multiplication (SpGEMM) serves as a crucial
kernel for intricate operations across various fields such as scientific
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Figure 1: Various sparse applications across distinct regions
of the sparsity space. Sparsity of A X Sparsity of B is color
coded. HS: Highly Sparse, MS: Mildly Sparse, and D: Dense.

computing [19, 29, 92], graph analytics [3, 9, 65], and machine learn-
ing [10, 21, 56]. SpGEMM computations capitalize on efficiently
discarding ineffectual zero elements, substantially reducing storage
demands and computational load, especially in scenarios character-
ized by large matrices with high levels of sparsity.

The diverse sparsity patterns observed in traditional scientific
computing, coupled with the growing adoption of sparsity in emerg-
ing domains such as deep neural networks [18, 30, 64], large lan-
guage models [16, 21, 104], and recommendation systems [11, 45, 55,
110], have significantly increased the demand for high-performance
and efficient SPGEMM. Figure 1 illustrates how various sparse ap-
plications cluster in distinct regions of the sparsity space. However,
these regions are not mutually exclusive, and a single application
may traverse multiple sparsity regimes during execution. A spar-
sity regime refers to a combination of the sparsity level of the
matrix and structural characteristics, such as the distribution of
nonzeros, regularity, and symmetry. For instance, neural networks
may initially exhibit moderate sparsity in their input matrices, but
techniques such as pruning [28, 83] or sparsity-inducing regular-
ization [59, 81] can significantly increase sparsity in specific layers.
As these patterns evolve dynamically, both software and hardware
systems must adapt to maintain performance and efficiency.

As SpGEMM gains traction across various domains, the need
for hardware accelerators that can handle varying sparsity levels
and structural irregularities, has grown significantly. Early accel-
erators such as OuterSPACE [71], MatRaptor [88], SpArch [108],
GAMMA [107], and InnerSP [4] were designed for highly sparse
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inputs, while others like SIGMA [77], DSTC [106], and HighLight
[96] target moderately sparse matrices. However, these designs
typically support a narrow range of sparsity regimes and are opti-
mized around fixed dataflow strategies, limiting their adaptability
to real-world, evolving workloads.

To overcome these limitations, more recent designs aim to build
versatile accelerators capable of adapting to a wide range of sparsity
regimes. For instance, Trapezoid [102] introduces novel dataflow
schemes to support a broad range of sparsity levels, while Flexagon
[66] employs a reconfigurable architecture to handle diverse sparse
workloads. Although these architectures represent an important
step toward general-purpose sparse acceleration, they still lack key
capabilities. In particular, neither provides a robust mechanism for
selecting the optimal dataflow based on the input matrices. Flexagon
relies on a simple offline profiling method, deferring the challenge
of comprehensive dataflow selection to future work. Trapezoid,
while supporting multiple dataflows, offers no dynamic strategy
for selecting among them at runtime.

A second challenge faced by these versatile accelerators is the
cost of flexibility. Supporting both dense and sparse workloads of-
ten requires incorporating heterogeneous hardware components—
compute-dense units for dense regimes, and sparsity-aware units
for sparse workloads. This increases area overhead and can lead to
significant underutilization. For example, when executing a dense
workload, the sparse-specific units often remain idle. Although
Trapezoid attempts to reuse some of these units, many compo-
nents such as local buffers, sparse schedulers, and distribution
networks necessary for sparse execution are underutilized dur-
ing dense phases. As a result, these accelerators suffer from ineffi-
ciencies stemming from hardware underutilization and increased
resource costs associated with generality.

In this work, we aim to address two key challenges: (1) enabling
flexible and dynamic selection of optimal dataflow schemes based
on input sparsity characteristics, and (2) minimizing hardware un-
derutilization and area overhead in versatile accelerator designs.

To tackle the first challenge, we propose a machine learning
(ML)-driven approach for dynamic dataflow selection. We broaden
the definition of a dataflow scheme to not only encompass the
scheduling of data elements to processing elements (PEs), but also
the configuration of supporting hardware units that facilitate data
distribution and computation. The task of selecting an appropri-
ate dataflow scheme naturally aligns with ML-based classification:
by extracting features from input matrices, we classify them cor-
responding to specific dataflow implementations optimized for
different sparsity regimes.

To address the second challenge of reducing hardware overhead
and avoiding underutilization, we target an FPGA-based implemen-
tation. Specifically, we leverage the reconfigurability of FPGAs to
dynamically switch between bitstreams corresponding to different
dataflow schemes. Each bitstream is tailored to utilize only the hard-
ware resources required for its targeted subset of sparsity regimes,
thereby achieving generality without compromising efficiency. Ad-
ditionally, a reconfiguration engine is introduced, which plays a
key role in determining when switching designs is beneficial—an
often non-trivial decision due to runtime overheads.
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Building on these two insights, we introduce Misam !, an ML-
based framework for dynamic dataflow scheme selection and intel-
ligent hardware reconfiguration. Misam prototypes sparse matrix-
matrix multiplication on the Xilinx Alveo U55C FPGA, equipped
with high-bandwidth memory (HBM). The host CPU predicts the
optimal dataflow scheme for a given input and loads the corre-
sponding bitstream onto the FPGA. A key feature of Misam is its
intelligent reconfiguration strategy. Selecting the best-performing
dataflow scheme alone is insufficient; the system must also de-
termine whether the reconfiguration overhead is justified by the
expected performance gain. Misam models this trade-off by eval-
uating both the predicted performance of each dataflow scheme
and the overhead associated with bitstream reconfiguration. It then
makes a holistic decision on whether reconfiguration is justified.

To evaluate our models, we compiled a dataset of 6,219 matri-
ces with sparsity levels ranging from 1% to 99%, combining highly
sparse matrices from SuiteSparse [12] with moderately sparse and
dense matrices from deep learning workloads. This diversity en-
ables robust and generalizable dataflow selection. We compared
our dataflow scheme predictions against widely used libraries such
as Intel MKL and cuSPARSE, both optimized for sparse matrix
multiplication, and achieved speedups of 15.33x over MKL, 4.48x
over cuSPARSE, and 3.23% over Trapezoid’s fixed dataflows. Finally,
we integrated Misam with Trapezoid’s dataflows, demonstrating
its compatibility and practical applicability in existing accelerator
architectures, with a selection accuracy of 90%.

In summary, Misam makes the following key contributions:

o We formulate dataflow scheme selection as an ML classifica-
tion problem and use lightweight decision trees to select optimal
schemes. This model applies to any application leveraging multiple
dataflow options.

e We develop a reconfiguration engine that evaluates whether
switching dataflow schemes is beneficial based on runtime met-
rics. The engine is compatible with any architecture supporting
reconfiguration at various granularities.

e We introduce a set of FPGA-based dataflow scheme imple-
mentations that demonstrate the functionality of Misam’s dataflow
scheme selection and reconfiguration engine.

2 Background & Targeted Challenges

Sparse matrix-matrix multiplication (Sp GEMM) plays a pivotal role
in numerous domains such as scientific computing, graph analytics,
and modern machine learning. Its computational advantage stems
from exploiting the sparsity in input matrices—ignoring zero ele-
ments to reduce both memory and compute overhead. This makes
SpGEMM especially effective for large-scale systems where data is
often inherently sparse.

2.1 Dataflows for Sparse Matrix Multiplication

Various dataflow strategies can be employed to multiply input
matrices Ayxx and Bgx N to produce Cprx N. The three common
ones are presented in Figure 2.

Inner Product (Figure 2, left): Dataflow multiplies a row of A with
a column of B, requiring A to be in compressed sparse row (CSR)
and B to be in compressed sparse column (CSC) format to mitigate

!Misam is a star in the constellation Perseus.
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Figure 2: Three SpGEMM Dataflow Approaches- Inner Prod-
uct (IP), Outer Product (OP), and Row-wise Product (RW).

irregular memory access. While it enables direct accumulation into
C, it suffers from redundant fetching of B’s columns—once per row
of A. Enhancements such as better caching [4], PE utilization [77],
and intersection detection [36] improve its efficiency.

Outer Product (Figure 2, middle): Dataflow pairs columns of A
with rows of B, maximizing input reuse by avoiding index matching.
However, the resulting partial matrices of C can exceed on-chip
memory limits, leading to high off-chip traffic. Prior work mitigates
this by decoupling accumulation [71], improving locality [108], op-
timizing off-chip memory [37], and pattern-aware scheduling [86].

Row-wise Product (Figure 2, right): Dataflow multiplies all nonzero
elements of a row in matrix A with corresponding nonzero elements
in matrix B, ensuring uniform input formats and avoiding index
matching. It supports effective output reuse and minimizes zero
outputs. However, irregular access to B’s rows due to sparse and
unstructured nonzero distribution in A reduces reuse efficiency.
Improvements by recent works include hardware-friendly sparse
formats [88] and custom FPGA accelerators [2].

Due to fundamental architectural differences, each dataflow ex-
hibits distinct performance characteristics depending on the spar-
sity pattern of the input. These accelerators are typically optimized
for specific sparsity structures that best align with their underly-
ing hardware. They adopt a fixed dataflow that favors either input
or output reuse—often at the expense of the other. Consequently,
performance degrades when the workload’s sparsity pattern does
not match the assumptions baked into the accelerator’s design.

Recent efforts have sought to address this limitation by proposing
more flexible Sp)GEMM architectures capable of handling a wider
variety of input patterns. Notable examples include Flexagon[66]
and Trapezoid[102], which represent early steps toward general-
purpose sparse matrix multiplication accelerators. Flexagon em-
ploys a reconfigurable architecture that adapts to varying sparsity
regimes, while Trapezoid uses a modular design to support multi-
ple dataflows. However, both rely on static configuration or offline
profiling to choose an execution strategy, limiting their adaptability
to dynamic sparsity patterns at runtime.

This leads to our first motivation: the lack of fast and accu-
rate dataflow selection. Given the high variability in sparsity
across matrices and applications, heuristic-based selection is often
insufficient. Manual heuristics are often brittle, require domain ex-
pertise to update, and lack quantified accuracy. In contrast, machine
learning provides a strong, data-driven alternative that is both low-
overhead and highly accurate. We therefore frame dataflow selec-
tion as a classification problem, which creates an adaptable model
that can be easily retrained as workloads evolve. This approach
replaces fixed, manual rules with an automated, learning-based
optimization that remains effective across diverse and changing
sparsity patterns.
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2.2 FPGA Implementation of Dataflows

oD1 oD2 1 D3

Normalized Performance
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DYNAMICS PROBLEM SIMULATION ~ GRAPH PROBLEM PROBLEM

Figure 3: Performance comparison of Misam’s design suite
(D1, D2, D3) across workloads from diverse applications (nor-
malized to the best design)

Field-Programmable Gate Arrays (FPGAs) have emerged as a
compelling platform for accelerating sparse matrix computations.
Their architecture offers massive fine-grained parallelism, and their
reconfigurable fabric enables the design of deeply pipelined, custom
data paths and memory systems. This combination is particularly
effective for handling the irregular memory access patterns and
low arithmetic intensity characteristic of sparse workloads, often
yielding significant performance and energy efficiency gains over
traditional CPUs and GPUs. Prior works have proposed numerous
specialized accelerators for sparse linear algebra kernels [8, 17, 35,
39, 79, 85, 86].

Sextans[86] and FSpGEMM][8] are two prominent works that im-
plement outer-product-like dataflows for sparse matrix-dense ma-
trix multiplication (SpMM) and row-wise-like dataflows for sparse
matrix-matrix multiplication (SpPGEMM), respectively. While both
achieve high performance within their targeted kernels, they are
specialized for either SpMM or SpGEMM and do not fully leverage
the reconfigurability of FPGAs to adapt to a broader range of work-
loads. This brings us to our second motivation: to harness the
reconfigurable nature of FPGAs to build a more generaliz-
able hardware architecture—one that can dynamically select and
switch between dataflows based on the workload characteristics.
Unlike Sextans and FSpGEMM, which rely on static configurations
or offline profiling, our approach enables runtime dataflow pre-
diction and reconfiguration, eliminating the need for extensive
pre-analysis and allowing the hardware to respond to diverse and
changing sparsity patterns on the fly.

Figure 3 presents the performance comparison across workloads
for three of the Misam designs, where the performance is normal-
ized to the best design. The figure includes a matrix footprint of
each workload to illustrate the variety in sparsity patterns. This
highlights a key motivation for our work: no single design consis-
tently outperforms others across all sparse workloads. Even within
the same application domain, such as computational fluid dynamics,
different sparsity regimes lead to different designs yielding better
performance. By supporting multiple dataflows and runtime re-
configurability, our architecture adapts to matrices from diverse
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Figure 4: Feature Selection — Analysis of the feature impor-
tance in the decision tree.

application domains, including those within the same domain but
with varying sparsity regimes, achieving performance portability
without sacrificing efficiency.

3 Misam

This section details the core components of Misam. We first describe
the ML-based predictor and the hardware it controls. Section 3.1
covers the ML-based dataflow predictor, a lightweight decision tree
that classifies matrix features to select an optimal dataflow with
high accuracy and minimal overhead. Section 3.2 then introduces
the suite of specialized FPGA designs that the model chooses from,
each architecturally tuned for different sparsity regimes to provide
a range of efficient hardware options.

Building on these components, Section 3.3 explains the reconfig-
uration engine that governs the system’s dynamic behavior. This
engine intelligently decides whether to trigger a hardware switch by
using a secondary model to weigh the predicted performance gain
against the runtime overhead of reconfiguration. This ensures that
hardware adaptivity is only employed when it is truly beneficial.

3.1 ML-Based Dataflow Predictor

A decision tree is only as effective as the feature set used to describe
the data, and capturing the characteristics of sparse matrices is a
particularly challenging task due to the multifaceted nature of
sparsity. This includes not just tracking the number of nonzeros,
but also understanding matrix patterns, symmetry, regularity, and
structural properties, and encoding them in a way that is meaningful
for learning. To address this, we began with a comprehensive list of
candidate features designed to represent various aspects of sparsity.

This initial feature set included: the sparsity of matrices A and
B, the average and variance of nonzeros per row and column in
both matrices, tile density under both 1D and architecture-aware
2D tiling schemes, the total number of 1D and 2D tiles, and inthe
ratio of the longest row/column to the average row/column length
(as a measure of potential imbalance). These features are efficiently
derived from the CSR and CSC formats using row and column
pointer offsets.

Using this full set, we trained an initial decision tree and then an-
alyzed feature importance to identify the most influential predictors
in selecting the optimal design, as shown in Figure 4. Among the
selected features, Tile_1D_Density, which measures the average
density of tiles in matrix B when it is partitioned in one dimension,
and row_B (the number of rows in matrix B) emerged as the most
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impactful. The model associates specific matrix dimensions and
corresponding tile densities with typical workload characteristics.
For instance, in machine learning workloads, matrix B commonly
has dimensions such as 256, 512, 1024, or 2048, and is often dense or
moderately sparse due to pruning. In contrast, scientific workloads
typically involve much larger matrices with low tile density, which
strongly suggests that B is highly sparse.

Other key features include A_load_imbalance_row and A_rows,
which capture the ratio of the longest row in matrix A to the av-
erage row length, and the total number of rows in A, respectively.
These features help the model detect potential load imbalances
when distributing rows of A across PEs, allowing it to select de-
signs that better accommodate such irregularities. The remaining
features shown in the figure further enrich the representation of
matrix structure, enabling the model to learn more nuanced sparsity
patterns and their associated optimal execution strategies. Features
not included in the figure were pruned from the model, as their
removal had no measurable impact on accuracy and contributed to
a more lightweight and efficient decision tree.

To train our decision tree, we split the dataset into 70% training
and 30% validation sets. The dataset contains comprehensive infor-
mation about running each design across all workloads, including
key performance metrics such as latency, throughput, PE utiliza-
tion, and energy consumption. The decision tree learns to associate
these features with the observed performance of each design to
accurately predict the optimal configuration.

During training, we observed class imbalance in the dataset,
which could bias the model toward the majority class. To mitigate
this, we applied a class weighting strategy, assigning weights in-
versely proportional to class frequency. This approach improves
the model’s sensitivity to underrepresented classes and results in a
more balanced and generalizable predictor. The final decision tree is
highly compact, requiring only 6 KB of storage, making it suitable
for deployment in memory-constrained environments. Through
10-fold cross-validation, the model achieved a prediction accuracy
of 90%, demonstrating both its effectiveness and efficiency.

Misam employs a decision tree model due to its lightweight foot-
print and low-latency inference, making it well-suited for systems
with limited storage and computational resources. Currently, the
model resides on the host, where it analyzes matrix features and
selects the optimal design configuration, requiring just 6KB of stor-
age. In future iterations, if inference is migrated to the FPGA to
enable on-device reconfiguration decisions, the model’s efficiency
and small memory footprint become even more critical.

Furthermore, Misam allows users to prioritize performance met-
rics based on their application requirements. For example, a user
may choose to optimize exclusively for performance, prioritize
energy efficiency, or apply a weighted combination of multiple
objectives. This tunable decision-making capability makes Misam
adaptable to a wide range of use cases. While adding more objec-
tives increases the decision tree’s complexity and, consequently,
inference time, the overhead remains modest. For instance, when
optimizing solely for latency, the inference cost is less than 0.1%
(see Section 5.5). As additional objectives are introduced, the tree be-
comes deeper and more complex, but given the model’s inherently
efficient structure, supporting two or three objectives is unlikely to
impose significant performance penalties.
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3.2 Misam Designs

Table 1: Parameter Configurations for Different Designs (Un-
comp: Uncompressed, Comp: compressed).

| Parameter | ID | Design 1 | Design 2 | Design 3 | Design 4 |
ch A A 8 12 12 3
ch B B 1 1 1 3
¢h C C 3 12 12 1
PEG N 16 24 24 16
ACCG M 16 24 24 16
Scheduler A SA Col Col Row Col
Format B CB Uncomp. Uncomp. Uncomp Comp.

This section introduces four designs, each tailored to different
sparse workloads to showcase the functionality of Misam. These
designs highlight that varying sparsity regimes benefit from spe-
cialized architectures optimized for their requirements. Later, in
Section 3.3, we discuss how the inherent reconfigurability of FPGAs
enables seamless switching between such architectures, and how
Misam’s portable prediction model supports an efficient pipeline
for decision-making and reconfiguration. The framework is also
flexible: users can integrate their own custom designs, and Misam
can readily adapt to these use cases. We elaborate on Misam’s
adaptability in Section 6.3.

ch_A,

[ ch_Ay |ch_A;  ch_A,, |ch
ch_B i
=T e _ ‘ [FiIF0] [FIFO0]  [FIFo] [FiFO]
)
chB | i g | fourelmli
i 1 and indices ‘PEGO ‘PEG1 ‘PEGM ‘ PEGN
e
: Py |
h-Bo | BRAM FIFO [FIFo] [FIFo]  [FiIFo] [FIFO]
v
(e |
To the next PEG é : ACCGO : ACCG, ACCG| ACCGy ACCGy
S
e, e N

Figure 5: The microarchitecture of Misam

3.2.1 Design 1: The design is built like the Sextans accelerator
[86] but adapted for a more resource-constrained Alveo U55C FPGA.
The configuration of this design is summarized in Table 1. The ar-
chitecture illustrated in figure 5 comprises N Processing Element
Groups (PEGs), each with 4 PEs. It utilizes separate HBM channels
for reading matrices A and B (ch_A and ch_B), and writing the out-
put matrix C (ch_C). Sparse matrix A is partitioned and distributed
across ch_A, where nonzero elements are streamed into PEG FI-
FOs. In contrast, dense matrix B is row-tiled and interleaved across
ch_B channels. Each PEG receives A values via its FIFO, while the
first PEG also reads B rows, which are forwarded downstream to
subsequent PEGs through a broadcasting network, ensuring syn-
chronized row processing across PEGs.

The architecture follows a row-wise product model: the column
index of each nonzero A element identifies the corresponding row
of B to be multiplied. Scheduling information is pre-generated on
the host and includes a pointer list for each PEG, specifying how
many A elements to consume per iteration. Each PE multiplies
an element of A with a matching row element of B, accumulat-
ing partial results into eight-element vectors that are streamed to

_Aa
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dedicated accumulator groups (ACCGs). Each ACCG consists of
four accumulators (ACCs), which sum the results and store them in
URAMs. B rows are temporarily buffered in BRAM for rapid access,
while partial results from A are stored in URAMs due to BRAM
capacity. Once a tile’s computation is complete, the accumulated
result is written to ch_C.

To optimize HBM bandwidth, 8 elements of A are coalesced
into a 64-bit word containing row index, column index, and value.
Similarly, 16 FP32 values from B are packed per read. Matrix A is
column-tiled on the host, while matrix B is tiled in both dimen-
sions: row tiling is based on BRAM capacity (4096 entries), and
column tiling is limited by the number of PEGs. This strategy suits
workloads like those in machine learning, which often feature tall-
and-skinny matrices where smaller B tiles are acceptable.

Figure 6 presents a toy example highlighting the differences
among the three SpMM kernel designs. In Design 1, the number
of PEGs is reduced to one, with two PEs per PEG. Designs 2 and 3
illustrate increased parallelism by using two PEGs. Each design tra-
verses matrix A in a column or row-wise fashion under a load/store
dependency constraint of 2 cycles and assigns work to each PE
in a round-robin manner. The figure includes input matrices with
varying sparsity patterns to demonstrate how each design handles
computation internally.

To estimate the total number of cycles, we account for the time
required to read matrix B, set to 3 cycles in this example, as all
designs access the same B matrix. Besides, we include a placeholder
for the time needed to broadcast B. Once a PEG receives its segment
of B, it begins computation in parallel while forwarding B to the next
PEG. Since all PEGs operate concurrently, the overall computation
time is determined by the PEG that completes its task last.

3.22 Design 2: The design builds upon Design 1 but introduces
key changes to memory bandwidth allocation and resource scal-
ing. As seen in Table 1, the primary distinction lies in the use of
additional HBM channels for matrix A and C (i.e., increased ch_A
and ch_C), and an expanded number of PEs. This configuration is
selected by our decision tree for large and denser matrices with rel-
atively consistent per-row sparsity. In such workloads, the higher
degree of memory parallelism ensures more efficient processing.
Design 2 fully utilizes available channels to accelerate large-scale
sparse computations compared to design 1. The rationale for in-
cluding Design 1, in addition to Designs 2 and 3, is discussed in
detail in Section 6.2.

In Figure 6 (a), we observe that Design 1 is more load-balanced
and efficient than Design 2 due to its better scheduling across fewer
PEs when operating on highly sparse matrices. While this example
is presented on a small scale, the performance gap between Designs
1 and 2 would become even more pronounced for larger matrices
with very few nonzero elements. The key issue lies in load/store
dependency stalls (or “bubbles”) during scheduling. Since elements
are assigned to PEs in a round-robin fashion and must respect
load/store dependency cycles within each row, Design 1 produces
a more compact schedule. By assigning more rows per PE, it can
interleave elements from different rows to fill bubbles effectively.
In contrast, Designs 2 and 3 lack sufficient elements to fill these
bubbles, forcing them to pad with inefficient zeros and thereby
reducing performance.
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Figure 6: Timeline of applying three Misam designs to three sparse matrices with varying sparsity levels, illustrating that
different designs can perform best depending on sparsity. The green shading highlights the fastest design for each matrix.

Conversely, for larger and denser matrices, each PE is assigned
a greater number of rows containing more nonzero elements. This
increases the likelihood that the scheduler can select indepen-
dent nonzeros from different rows to mask sparsity-induced stalls
(or bubbles) caused by load/store dependencies. For example, if a
nonzero at time step ¢ must be delayed until ¢ + 2 due to row-level
dependencies, the scheduler can fill time step ¢ + 1 with a nonzero
from another row mapped to the same PE. Such interleaving enables
continuous execution across rows without violating dependency
constraints. As illustrated in Figure 6(b), under these conditions,
Design 2 produces a more efficient schedule than Design 1.

Ultimately, the choice between Design 1 and Design 2 depends
on the matrix characteristics—particularly size, sparsity level, and
the distribution of nonzeros. As matrix size increases, the set of
candidate rows per PE grows, giving Design 2’s scheduler greater
flexibility to resolve scheduling gaps. This leads to more optimal ex-
ecution with reduced idle time, higher PE utilization, and improved
throughput. In contrast, for matrices with uniformly low nonzero
density, where each row provides insufficient work for a large PE
set, Design 1 is more efficient. These features serve as key decision
factors in our model (Figure 4), guiding the selection of the design
that delivers optimal performance for a given input.

3.23 Design 3: It shares its hardware configuration with Design
2 but alters the traversal and scheduling. Instead of processing
matrix A in a column-wise manner, it adopts a row-wise traversal.
As a result, elements are assigned to PEs based on the column
index modulo the PE count (column_num%PE), shifting the load
distribution logic to better accommodate irregular sparsity patterns.

This change is especially advantageous in scenarios where matrix
A exhibits high load imbalance across rows. As shown in Figure 6,
row-wise traversal can lead to a more compact schedule with fewer
idle cycles ("bubbles") caused by load/store dependencies. Sched-
uling still respects a 2-cycle dependency constraint, but because

elements from the same row are processed in order, and sparsity is
irregular, the schedule interleaves more efficiently across PEs.

Design 3 is frequently selected by our decision tree when the
A_nonzeroes and A_load_imbalance_row features signal high vari-
ation across rows. In such cases, traditional column-wise processing
(Designs 1 and 2) often struggles with PE underutilization, whereas
Design 3 maintains higher throughput by exploiting row-level ir-
regularities. We illustrate this scenario in Figure 6(c), where Design
3 produces the most optimal schedule compared to the other de-
signs. This example also highlights the necessity of Design 3, as
the difference in scheduling quality between Designs 2 and 3 is
substantial: Design 2 requires significant padding with inefficient
zeros, whereas Design 3 generates a compact and performant ex-
ecution schedule. As with all designs, effectiveness depends on
matrix structure and sparsity profile. The decision tree encodes
these dependencies and uses them to predict the most appropriate
scheduling approach per workload.

3.24 Design 4: The design extends the baseline architecture to
support SpGEMM, where both input matrices A and B are sparse.
While the core architecture remains largely unchanged, several
modifications are introduced to handle the sparsity of matrix B
and enable compressed storage and computation. As with matrix
A, the nonzero elements of matrix B are coalesced and encoded
in a 64-bit format that includes the row index, column index, and
value. The FIFO-based dataflow used between PEGs is retained,
enabling pipelined and synchronized processing. An addition in
this design is the introduction of a pointer list for matrix B, which
tracks the number of nonzero elements to be read per tile, mirroring
the mechanism used for scheduling matrix A.

Design 4 introduces a two-dimensional tiling strategy for matrix
B, tailored to its sparse structure. Specifically, matrix B is tiled both
row-wise and column-wise, with the tiling dimensions guided by
its sparsity pattern and the available BRAM capacity. Since BRAM
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Figure 7: High-Level Overview of Misam

must now store coalesced sparse rows instead of dense vectors, the
primary objective is to maximize the number of nonzero elements
per tile while minimizing wasted space. To achieve this, the host
performs a sparsity-aware packing analysis to determine an optimal
row-wise tile size for B that fits efficiently within the BRAM limits.
Furthermore, each BRAM row may pack multiple sparse rows of
B, since each row contains relatively few nonzero elements. To
track the start and end positions of each logical row of B within
BRAM, metadata is stored in the PEG-local URAMs. At runtime,
the column index of a nonzero in matrix A is used to index into
this URAM mapping, retrieving the corresponding BRAM range
where the matching row of B is stored.

After matrix B is tiled, matrix A is tiled column-wise, with each
tile of A aligned to the corresponding rows of B required for com-
putation. This tiling order is critical: the row-wise tiling of B con-
strains the column-wise tiling of A, since each tile of A must access
a specific set of B rows that are already resident in BRAM. This
dependency ensures high data locality and allows each PEG to op-
erate on co-located tiles of A and B without incurring redundant
BRAM accesses or overlapping data loads.

Analysis of the trained model reveals that Design 4 is selected
for workloads where matrix B is highly sparse. In SpMM, HBM
reads could fetch 16 FP32 values per access. In SpGEMM, how-
ever, B is stored in a 64-bit COO format, reducing each HBM read
to 8 coalesced nonzero entries (each including row, column, and
value). This effectively halves the read bandwidth for B, making
compression worthwhile only when B’s sparsity is high. For denser
matrices, storing B in an uncompressed dense format offers bet-
ter bandwidth utilization and lower latency. Our model is able to
analyze this trade-off and make selections accordingly. Additional
designs can be added for Sp)GEMM that have fine-grained support
for highly sparse matrix patterns. Our framework can support as
many designs as the user requires for their use case.

3.3 Reconfiguration Optimizations

While we have developed multiple architectural designs and a pre-
dictive model to select the most suitable one for a given input, an
important question remains: how frequently should the FPGA be
reconfigured to switch between designs? Figure 7 illustrates our
proposed setup. On the host side, we first extract relevant features
from the input matrix, which are then passed to a trained model
that predicts the optimal design. Both the features and the selected
design are then provided as inputs to the reconfiguration engine.
This engine includes a secondary model that estimates the ex-
pected latency for the predicted design, based on the matrix fea-
tures and the current FPGA configuration. The engine also checks

whether the required bitstream for the new design is already loaded.
If not, it adds the bitstream reconfiguration time, which we extract
empirically by analyzing timeline traces of bitstream loading on
the FPGA, to the predicted latency. If the total estimated runtime
(latency + reconfiguration time) is below a predefined reconfig-
uration threshold, then reconfiguration is deemed beneficial and
is triggered. This threshold is user-defined and can be tuned to
balance performance gains against reconfiguration overheads, de-
pending on the deployment context. In our experiments, we set the
threshold to 20%, meaning reconfiguration is triggered only when
its overhead is less than 20% of the expected gain. Increasing the
threshold allows more frequent reconfiguration by relaxing this
constraint, while decreasing it results in stricter decisions, trigger-
ing reconfiguration only when substantial gains are expected.

Our system operates on a streaming execution model, where
large matrices are divided into smaller tiles of varying sizes, typi-
cally ranging from 10k to 50k. These tiles are then streamed into
the host incrementally. To prevent matrix dimension bias in our
model, the tile sizes are selected randomly from within this range.
The matrix A is partitioned in a tile-wise manner, while matrix B
is partitioned row-wise, ensuring that the tiles are independent of
each other. As a result, no partial reduction is needed within the
tiles, eliminating the overhead of post-processing on the host side.
Once the tile computation is completed on the FPGA, the results
are streamed back to the host for storage.

As aresult, reconfiguration granularity is defined at the tile level.
If performance projections indicate that switching designs between
tiles of the same matrix will yield a net latency benefit, reconfig-
uration is initiated by sending the new bitstream to the device.
Otherwise, the host only sends the scheduled data. We will discuss
in Section 6.1, the Xilinx U55C incurs significant overhead during
reconfiguration, making tile-level reconfiguration suboptimal. In
other scenarios where reconfiguration overhead is minimal, Misam
provides the flexibility to perform reconfiguration at the tile level.

4 Experimental Setup

System: We prototype our proposed design for Xilinx Alveo U55C
FPGA and optimized the design using Tapa [26] and RapidStream
[27]. The estimated resource usage is summarized in Table 2. No-
tably, Designs 2 and 3 share the same bitstream, differing only in
how the host system schedules access to HBM channels. To train
our machine learning model using a dataset comprising thousands
of matrices and corresponding performance metrics for each design,
we developed a simulator for each design. The simulator is built
using detailed profiling runs and HLS synthesis reports that capture
hardware behavior like the number of cycles required to read data
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Table 2: Resource estimation for Xilinx U55C.

Design Name Resource Utilization Freq (MHz)
LUT FF BRAM URAM DSP

Design 1 33.20% 23.61% 60.71%  26.67%  29.00% 284.02

Design 2 & 3 43.03% 30.35% 48.02%  40.00% 30.68% 290.3

Design 4 30.53% 21.15% 24.21%  30.00% 20.49% 287.4

from HBM, time spent in compute units, per-stage pipeline latency,
and the time to write outputs to memory.

Baselines: We evaluate Misam against multiple baselines to
assess its performance across a wide range of sparsity regimes.
First, we compare against Trapezoid, using their cycle-accurate
simulator across all of their proposed dataflow architectures. In
addition, we benchmark Misam against two widely-used software
libraries: cuSPARSE [67], executed on an NVIDIA RTX A6000 GPU,
and Intel oneAPI Math Kernel Library (MKL) [47], run on an Intel
Core i9-11980HK CPU with 32 GB of memory. RTX A6000 is a
server-class GPU that features 84 streaming multiprocessors (SMs),
each with 128 KB of L1 cache, and is equipped with 48 GB of GDDR6
memory (384 bits wide) that offers a bandwidth of 768 GB/s. These
software libraries are evaluated on the same workload as Misam.

Energy: We estimate the energy consumption of Misam by pro-
filing the generated bitstream and using Xilinx’s xbutil tool to
monitor power consumption. The measured power values are then
combined with the kernel execution time to compute an estimate
of the total energy consumed. For CPU-based computations on the
Intel Core 19, we obtain power and energy usage programmatically
via the PowerCap interface and Intel RAPL. For GPU-based exe-
cution on the NVIDIA RTX A6000, we use NVIDIA Management
Library (NVML), a C-based API for monitoring NVIDIA GPU power
consumption.

Table 3: Highly Sparse (HS) Matrices Used in Evaluation

Name ID Dens. Rows NNZ
p2p-Gnutella24 p2p 9.3e-5 26518 65369
sx-mathoverflow SX 3.9e-4 24818 239978
ca-CondMat cond 3.5e-4 23133 186936
Oregon-2 ore 3.5e-4 11806 65460
email-Enron em 2.7e-4 36692 367662
optl opt 8.1e-3 15449 1930655
scircuit sc 3.3e-5 170998 958936
gupta2 gup 1.1e-3 62064 4248286
sme3Db sme 2.5e-3 29067 2081063
poisson3Da poi 1.9e-3 13514 352762
wiki-RfA wiki 1.5e-3 11380 188077
ca-AstroPh astro 1.1e-3 18772 396160
msc10848 ms 1.0e-2 10848 1229776
ramage02 ram 1.0e-2 16830 2866352
cagel2 cage 1.2e-4 130228 2032536
goodwin good 6.0e-3 7320 324772

Workloads: To enable a fair comparison, we adopt a workload
selection strategy similar to Trapezoid. Specifically, we evaluate 116
standalone matrix multiplication workloads, categorized as follows:
15 MSxD, 38 MSXMS, 12 HSxD, 36 HSXMS, and 12 HSXHS. Here,
D refers to dense matrices, MS to moderately sparse matrices, and
HS to highly sparse matrices.

For the D and MS categories, we use DNN-derived workloads
from ResNet-50 and VGG-16 models. In the MSXD setting, the dense
matrices have a fixed sequence length of 512, and the moderately
sparse matrices are pruned ResNet-50 models. We apply structured
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pruning using STR [49], following the same methodology as Trape-
zoid, targeting weight densities of 0.1 and 0.2. Similarly, VGG-16
layers are pruned to the same density levels for the MSXMS combi-
nations.

For combinations involving highly sparse (HS) inputs, we use
the same matrices as Trapezoid from the SuiteSparse collection [12]
shown in table 3. In the HSXD category, we evaluate the same 12 di-
verse matrices used in Trapezoid, multiplying each with a randomly
generated dense matrix B having 512 columns—representative of
applications such as solvers with multiple right-hand sides. In
the HSXMS category, each of the 12 HS matrices is multiplied
by three randomly generated sparse matrices (B) of 512 columns,
with sparsity levels of 0.2, 0.4, and 0.6. Finally, for the HSXHS
category, we evaluate AXA for each of the 12 matrices to model
self-multiplication scenarios commonly seen in graph analytics and
numerical solvers.

Datasets: To train and evaluate our decision tree model, we
curated a dataset of 6,219 matrices covering a wide range of spar-
sity levels for both input matrices A and B, from 1% to 99%. To
train and evaluate our latency predictor model, we curated a larger
dataset comprising 19,000 matrices, which also includes the dataset
used for training the decision model. Both datasets capture diverse
sparsity patterns, enabling the model to learn meaningful correla-
tions between matrix features and optimal dataflow designs. Highly
sparse (HS) matrices were sourced from the SuiteSparse reposi-
tory [12], while moderately sparse (MS) and dense (D) matrices
were derived from deep learning workloads such as VGG, ResNet,
MobileNet, and ImageNet. To generate MS matrices, we applied
structured pruning techniques to intermediate layers of these mod-
els. The dataset included sufficient representation across all sparsity
regimes to support the learning of thresholds for each architectural
design. For training, we used a 70/30 train-evaluation split and per-
formed k-fold cross-validation to assess accuracy and guard against
overfitting.

5 Evaluations & Key Findings

This section presents the results of our experiments. We first evalu-
ate the accuracy of the ML-based model selection and reconfigu-
ration engine and their impact on Misam’s performance. We then
compare the performance of Misam designs against state-of-the-art
sparse accelerators, followed by a detailed breakdown of Misam’s
components and their associated performance overheads.

5.1 ML Model Selection

Table 4: Geometric mean speedup of the optimal design over
other designs for all workloads.

Speedup ‘ Design 1 Design2 Design 3

Design 1 1.00 1.35 1.35
Design 2 1.29 1.00 1.50
Design 3 1.28 1.81 1.00

The selection of the optimal design is highly dependent on the
structure of the matrix. To quantify this observation, we calculate
the speedup of the selected best-performing design over the other
two for every matrix in our dataset. These results are summarized
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in Table 4, which presents the geometric mean speedups. Design
4 is excluded from this analysis because its usage is explicitly de-
termined by a clear decision in the model: it is mostly selected
for highly sparse workloads, where no other design can compete.
Conversely, for all other workloads, design 4 consistently under-
performs.

Table 5: Confusion Matrix for the ML model
Predicted/Actual ‘ Design 1 Design2 Design3 Design4

Design 1 130 6 2 0
Design 2 4 257 28 0
Design 3 5 59 135 0
Design 4 0 1 0 617

Our ML model, which is responsible for optimal design selection,
achieves 90% accuracy, translating to a geometric mean speedup
of 1.31x for accurate predictions and a slight slowdown of 1.06x
for mispredictions. The confusion matrix in table 5 highlights the
model’s ability to correctly classify most instances, with a high
number of true positives along the diagonal. Misclassifications,
indicated by off-diagonal elements, occur but are relatively few,
reflecting the model’s 90% accuracy. The predictions from the model
are then routed to the reconfiguration engine, which is trained with
a larger dataset and achieves an even higher accuracy of 97%. This
secondary model acts as an additional layer of validation, ensuring
that only predictions which result in performance improvements
are accepted. In the following section, we quantify the end-to-end
slowdown that occurs in the event of a failure in this secondary
validation process. Overall, the lightweight inference of the model
and the preprocessing stage yield substantial performance gains,
while the optimal model size strikes a balance between accuracy
and minimal inference time overhead.

5.2 Reconfiguration Engine Prediction
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Figure 8: Reconfiguration overhead analysis on Xilinx U55C
(lower is better).

We evaluate the performance of our reconfiguration engine us-
ing a diverse set of workloads from our dataset. Figure 8 compares
executing each workload with the currently loaded bitstream ("cur-
rent" bar) against the best-performing design for that workload.
The design selected by the engine is marked with a star. We decom-
pose the execution time into the design’s intrinsic latency and the
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overhead incurred during design switching. Notably, transitions
between design 2 and design 3 do not incur reconfiguration over-
head, as they share the same bitstream. The Xilinx U55C shows
significant reconfiguration overhead, discussed in more detail in
Section 6.1.

Our analysis shows that reconfiguration often provides substan-
tial speedups, especially for large matrices. For example, the cg15
workload (1.5M by 1.5M) achieves up to a 10.76x speedup, as the
reconfiguration cost is amortized over tiled processing. In contrast,
workloads like apa2 or del19 show minimal performance gain from
switching designs, with the reconfiguration overhead outweighing
the benefit. In these situations, the engine opts to retain the current
design, resulting in a slight slowdown compared to the theoretical
best. The engine achieves a geometric mean speedup of 2.74X where
reconfiguration occurs and a slowdown of 1.02x when overhead
outweighs performance gain.
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Figure 9: Accuracy analysis of the reconfiguration-engine

predictor.

While the observed reconfiguration overhead stems from hard-
ware limitations, not deficiencies in the engine, future FPGA plat-
forms with reduced reconfiguration times could enable the engine
to more aggressively select optimal designs. Additionally, users
can configure reconfiguration times for designs to zero, allowing
the engine to focus on design efficiency and always switch to the
optimal bitstream. To further assess the accuracy of the engine’s
predictions, we examine residuals between predicted and actual
latencies, shown in Figure 9. Our latency predictor achieves a mean
absolute error (MAE) of 0.344 and an R? value of 0.978. The R?
metric measures how well the predicted values explain the variance
in the actual latencies, with a value close to 1 indicating high pre-
diction accuracy. These results confirm the reliability of our model
and support the engine’s effectiveness.

5.3 Performance Gain

Figure 10 shows that Misam achieves average performance gains
of 3.23x%, 1.01X, and 5.84x over Trapezoid for HSXMS, MSXMS,
and HSXD workloads, respectively. The most significant gains
are observed in the HSxMS and HSxD workloads. Furthermore,
Misam achieves average performance gains of 5.50X, 15.33%, and
20.27% over the CPU, and 1.37X, 4.48%, and 11.26X over the GPU
for the HSXHS, HSXMS, and MSXMS workloads, respectively. As
expected, GPUs excel in dense matrix multiplications due to their
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Figure 11: Energy Efficiency Gain of Misam over CPU and GPU on extended workload.

high-throughput architecture optimized for such workloads. Inter-
estingly, for MS workloads, we observe a performance degradation,
which could be due to pruning the layers such that it introduces
a non-optimal sparsity structure for tensor cores. Both Trapezoid
and Misam outperform the GPU on these workloads.

These performance improvements on highly sparse workloads
stem from Misam’s efficient computation pipelining and its adaptive
tiling strategy for matrix B. In the case of HS X MS, some workloads
require the second operand to be treated as highly sparse, while
others benefit from treating it as dense. Similar pattern with MS
X MS workloads. Through its model selection mechanism, Misam
dynamically chooses between sparse and dense designs and benefits
from improved performance. In contrast, other implementations
lack such a runtime selection strategy and thus cannot exploit this
advantage. We discuss how the model selection strategy can be
adapted to CPU and GPU libraries in Section 6.3.

5.4 Energy Gain

We compare Misam’s energy efficiency against both CPU and GPU
baselines across different matrix categories. On average, Misam
achieves significantly better energy efficiency over the CPU, with
improvements of 14.94x (HSXHS), 47.24X (MSXMS), 33.96x (HSXMS),
6.08x (HSxD), and 5.51x (MSxD). Compared to the GPU, Misam
still maintains substantial energy advantages in most cases—8.21X,
43.07X%, and 39.86x for HSXHS, MSXMS, and HSXMS, respectively.
However, for workloads involving dense matrices, such as HSXD
and MSxD, the GPU’s optimized dense operations lead to lower
energy consumption than Misam, where we observe 0.47x and
0.27x efficiency ratios, respectively. The trapezoid simulator does
not provide energy consumption metrics, so we were unable to
include it in this comparison.

Figure 11 shows the energy efficiency of Misam compared to CPU
and GPU implementations across various workloads. For highly
sparse inputs, Misam demonstrates significantly higher energy
gains over all three baselines. This can be attributed to two factors:
(1) its substantial performance advantage, which reduces execution

10

time, and (2) its implementation on an FPGA platform, which is
inherently more power and energy-efficient than general-purpose
processors and GPUs. These characteristics make Misam particu-
larly well-suited for workloads dominated by extreme sparsity.
As workloads become denser, the energy advantage of Misam
over GPUs diminishes. This is expected, as GPUs are high-throughput
architectures optimized for dense computations. While GPUs may
not match the energy efficiency of FPGAs, their ability to complete
dense workloads rapidly offsets this difference. Nevertheless, the
key takeaway is Misam’s versatility: although it may not always
outperform the best specialized hardware for a given workload, it
consistently delivers competitive results across a wide spectrum of
sparsity patterns, offering a balanced and adaptable solution.

5.5 Misam’s Performance Breakdown

Figure 12 presents a normalized performance comparison of Misam,
CPU, GPU, and Trapezoid across a representative set of matrices.
Each subplot is normalized to the best-performing accelerator in its
respective category. For Misam, we further break down its perfor-
mance into three components: preprocessing latency, which is the
time required to extract features from the input matrices; inference
latency, which includes both the inference time of the machine
learning model and the reconfiguration engine; and finally, the
hardware execution latency of Misam.

As shown in the plots, both preprocessing and inference latencies
make up a very small portion of the total execution time. Specif-
ically, the ML model inference takes only 0.002 ms, and the re-
configuration engine adds just 0.005 ms, together accounting for
about 0.1% of Misam’s total execution time, making the inference
latency line barely visible in most plots. This efficiency stems from
our lightweight 6 KB model, which is pruned and uses only the
top four features. Moreover, instead of using a Python inference
library, which introduced a massive slowdown due to its lack of
optimization for small models, we implemented a custom inference
function by unrolling the decision logic. Inference time was derived
by averaging results over 1,800 test cases.
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Figure 12: End-to-End performance comparison on representative workloads (normalized to the best accelerator).

In contrast, preprocessing latency is slightly higher, accounting
for approximately 2% of Misam’s overall performance, and it varies
depending on matrix size. For smaller matrices, such as those in
MSxD and HSxD, the overhead from preprocessing is negligible.
This is because matrix B, although dense, is small in size compared
to the very large HS matrices. Importantly, our most critical feature
is derived from matrix B, and among the top four features, this one
is the most time-consuming to extract.

6 Discussions

This section explores how Misam leverages hardware reconfigura-
bility and ML-based decision-making to adapt to diverse workloads.
We first analyze the overheads of full and partial FPGA reconfigu-
ration, then demonstrate how resource-efficient bitstreams enable
multi-tenant execution and improved hardware utilization. Finally,
we show how Misam’s low-overhead, high-accuracy components
generalize across architectures and sparsity regimes.

6.1 Reconfiguration Time

Figure 8 illustrates that full bitstream reconfiguration on the Xilinx
U55C FPGA typically takes 3-4 seconds , with bitstream sizes of
50-80 MB transferred over a PCle Gen4 x8 interface at 6.4 GB/s.
Profiling indicates that the primary contributor to this overhead
is the FPGA fabric programming phase, which dominates the total
reconfiguration time. To better understand this bottleneck, we eval-
uated multiple reconfiguration methods, including the Vivado GUI
[98], OpenCL API [46], and XRT command-line interface [99]. All
approaches yielded similar reconfiguration times, suggesting that
the limiting factor is the bitstream transfer and device programming
process itself, rather than the specific software stack used.

To address this challenge, we explored partial reconfiguration,
where only a dynamic region of the FPGA is updated while the static
region remains in place. For small dynamic regions, this approach
reduced reconfiguration time to several hundred milliseconds. How-
ever, as the size of the dynamic region increases, the time savings
diminish and the overhead approaches that of a full reconfigura-
tion. In our case, the architecture did not naturally support very
small dynamic regions, so we chose not to pursue partial reconfig-
uration further in this project. Nonetheless, our experiments with
minimal dynamic regions demonstrated substantial performance
improvements, highlighting that careful partitioning could make
this a promising research direction for future work.
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Looking ahead, designing architectures with small, modular dy-
namic regions could further exploit the benefits of partial reconfig-
uration. However, for highly latency-sensitive applications, even
these reduced reconfiguration times may still be a limiting factor
for end-to-end performance. An alternative direction is the use of
Coarse-Grained Reconfigurable Architectures (CGRAs), which can
achieve reconfiguration times in the microsecond to millisecond
range, though at the cost of more complex and time-intensive com-
pilation [58]. The Misam reconfiguration engine could be adapted
for CGRA platforms, where intelligent runtime decisions are needed
to balance reconfiguration overhead and performance gains. Given
the low inference latency of our ML-based engine, further reducing
reconfiguration time in such architectures could unlock additional
performance benefits, especially in dynamic and adaptive comput-
ing scenarios.

6.2 Efficient Hardware Utilization

While ASIC accelerators like Trapezoid offer high-performance ex-
ecution for sparse matrix workloads through customized dataflows,
they incur significant area overhead and hardware underutiliza-
tion due to their fixed-function nature. To support a wide range
of dataflows optimized for different sparsity regimes, Trapezoid
must integrate hardware blocks for all supported configurations.
This results in area costs of 69.7mm?, 57.6mm?, and 51.2mm? for
different configurations. When switching to a dataflow that only
requires the smaller configurations, up to 26.5% of the chip area
becomes idle, yet still contributes to silicon cost and power leakage.

FPGAs address this inefficiency through reconfigurability and
dynamic resource management. Our FPGA-based designs show
diverse and compact footprints: for example, Design 1 uses only
33.2% of LUTs, 29.0% of DSPs, and 60.7% of BRAMs, while Design 4
uses just 24.21% of BRAMs. This enables a unique advantage: multi-
tenant execution, where multiple independent bitstreams run con-
currently on different regions of the FPGA. Based on resource usage
profiles, we estimate that the FPGA can accommodate 1 instance
of Design 1, 2 instances of Design 2 or 3, and up to 2 instances of
Design 4 in parallel—each executing a different workload. Moreover,
once a design is placed, any remaining FPGA capacity can be used
to co-locate additional workloads, including other bitstreams with
compatible resource footprints, provided their cumulative resource
usage stays within the device’s limits. This dynamic partitioning
allows for full exploitation of LUTs, BRAMs, URAMs, and DSPs,
dramatically improving effective hardware utilization. In contrast,
ASICs like Trapezoid are over-provisioned for generality, paying
the cost in underutilized silicon when running narrower workloads.
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Figure 13: Performance comparison of Trapezoid’s dataflows
(normalized to the best dataflow).

Thus, FPGAs not only reduce area waste through specialization
but also unlock higher throughput per chip through spatial multi-
tenancy, making them especially advantageous in workload-diverse
or multi-user environments.

6.3 Adaptability of Misam Components

Misam is built around two core components: a machine learning
model that predicts the optimal dataflow scheme, and a reconfig-
uration engine that determines whether switching to a different
dataflow is beneficial. One of the primary objectives of Misam was
to automate dataflow selection—an issue that prior architectures,
such as Trapezoid, leave unaddressed. While Trapezoid supports
three specialized dataflows for SPGEMM and SpMM workloads, it
does not provide a mechanism for selecting among them. Figure
13 illustrates these dataflows and highlights that their optimality
varies across workloads, with no clear method to guide the choice.
For instance, different layers of ConvNeXt benefit from different
dataflows. This underscores the need for a systematic dataflow
selection mechanism.

By training Misam’s ML model on Trapezoid’s dataflows, we
achieved 92% prediction accuracy and observed up to a 15.8%
speedup when the optimal dataflow was chosen. Notably, the ML
inference overhead is just 0.1% of total execution time (geometric
mean), ensuring minimal performance impact. Misam is also ex-
tensible to heterogeneous environments involving CPUs, GPUs,
FPGAs, and ASICs. Based on performance trends across different
sparsity regimes, the model can route workloads to the most suit-
able device; for instance, it correctly routes workloads to the GPU
when it consistently offers better performance.

Beyond ASIC accelerators such as Trapezoid, Misam can be
generally extended to scenarios where the optimal configuration
depends on the matrix’s sparsity pattern. Acamar [5], for instance,
is a reconfigurable scientific computing accelerator that currently
uses heuristics to predict which solver to use based on sparsity.
Acamar’s reconfiguration unit relies on heuristics for reconfigura-
tion decisions, but lacks quantified accuracy or the overhead of this
approach. The combination of our low-overhead and high-accuracy
components makes it a strong candidate for deployment in such
domains, offering a data-driven alternative to manual heuristics.

A core objective of Misam is to design ML-based components that
remain adaptable across diverse scenarios. Its low preprocessing
and inference overhead, combined with high prediction accuracy,
make it a strong alternative to heuristic methods, which often re-
quire domain expertise and manual updates. Unlike fixed heuristics,
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Misam can be retrained as workloads evolve, often within minutes
for reasonably sized datasets. Besides, insights from trained models
can inform the design of new heuristics, bridging the gap between
manual rule design and adaptive learning-based optimization.

7 Related Work

The related studies discussed throughout the paper are just a few
among various recent works focused on sparse problems [1, 6, 7, 14,
15,17, 20, 22, 23, 25, 33, 34, 38, 40, 41, 43, 44, 48, 50, 51, 53, 57, 60-62,
66,70, 76,78, 80,82, 84, 85,87, 90,93-95, 97, 100, 101, 103, 105]. More
specifically, there have been numerous sparse accelerators proposed
that optimize for fixed dataflows [52, 68, 69, 72, 73, 89, 109]. Recent
designs aim for flexibility by avoiding static dataflows [31, 54, 63,
66, 91, 102], but they typically depend on ad hoc heuristics, lacking
a general, portable mechanism for dataflow selection. Misam aims
to bridge this gap by offering a general, portable framework for
dataflow selection that supports both existing and future sparse
matrix multiplication accelerators.

While numerous works have focused on accelerating sparse lin-
ear algebra kernels on FPGAs [8, 13, 17, 24, 32, 39, 41, 42, 79, 86]
and others have leveraged FPGA reconfigurability for various ap-
plications [5, 74, 75], Misam introduces a novel synthesis of these
two areas. To our knowledge, it is the first framework to feature an
intelligent reconfiguration engine that analyzes an input matrix’s
sparsity pattern to perform a cost-benefit analysis, determining at
runtime whether the performance gain from switching configura-
tions justifies the overhead.

8 Conclusions

Misam advances sparse matrix—matrix multiplication by unifying
learned dataflow selection with targeted reconfigurability. It formu-
lates dataflow choice as an ML classification problem over matrix
features, using a lightweight decision tree to pick among distinct
dataflow/hardware configurations rather than relying on ad-hoc
rules or offline profiling. This selector is paired with an intelli-
gent reconfiguration engine that performs an explicit cost-benefit
analysis, considering both predicted latency and bitstream-switch
overhead, to decide when a design switch is worthwhile. Together
with a suite of specialized FPGA designs that expose complemen-
tary strengths across sparsity regimes, the framework provides a
principled, runtime path to adaptability without overprovisioned
hardware. The framework also exposes practical knobs to adapt
decisions to deployment goals, while leaving room for future direc-
tions such as on-device inference or finer-grained reconfiguration.
Its selector and reconfiguration logic are deployment-agnostic and
can be integrated with CPUs, GPUs, FPGAs, or CGRAS. In short,
Misam offers a general, portable mechanism for dataflow selection
and runtime reconfiguration that can slot into existing or future
sparse acceleration stacks.
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